Skip to main content

Olfaction in Honey Bees: From Molecules to Behavior

  • Chapter
  • First Online:
Honeybee Neurobiology and Behavior

Abstract

For more than a century, honey bees have constituted a major model for the study of olfactory detection, processing, learning and memory. This chapter reviews major advances based on three main approaches. Firstly, we address the experimental study of bees’ olfactory behavior, from early experiments on free-flying workers until laboratory-based training protocols on restrained individuals. We describe bees’ impressive discrimination and generalization abilities depending on odor quality and quantity, their capacity to grant special properties to olfactory mixtures as well as to recognize individual components. Secondly, we provide a detailed description of the olfactory pathways of the bee brain that subtend these behaviors, based on anatomical and immunochemical studies. We show how odors are detected by olfactory receptors carried by receptor neurons in the antenna, which convey information to a first processing relay, the antennal lobe (AL). We describe processing circuits within this structure and show how olfactory information is then conducted to higher-order centres, the mushroom bodies (MBs) and the lateral horn (LH), following different pathways through the brain. We finish by discussing the structure of the MBs, their local circuits and output connections and how they may be linked to motor output. Thirdly, we show how functional approaches based on the recording of odor-evoked activity in the bee brain allow following the series of transformations of the olfactory representation through its different centers. Data from electrophysiological and optical imaging approaches are reviewed. Doing so, we explain how coupling behavior with functional approaches allows understanding the perceptual representation of odors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CS:

Conditioned stimulus

GABA:

Gamma-aminobutyric acid

PER:

Proboscis extension reflex

US:

Unconditioned stimulus

References

  1. Abel R, Rybak J, Menzel R (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 437:363–383

    Article  PubMed  CAS  Google Scholar 

  2. Akers RP, Getz WM (1992) A test of identified response classes among olfactory receptor neurons in the honey-bee worker. Chem Senses 17:191–209

    Article  Google Scholar 

  3. Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees. J Comp Psychol 97:107–119

    Article  PubMed  CAS  Google Scholar 

  4. Deisig N, Lachnit H, Sandoz JC, Lober K, Giurfa M (2003) A modified version of the unique cue theory accounts for olfactory compound processing in honeybees. Learn Mem 10:199–208

    Article  PubMed  Google Scholar 

  5. Deisig N, Giurfa M, Lachnit H, Sandoz JC (2006) Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur J Neurosci 24:1161–1174

    Article  PubMed  Google Scholar 

  6. Deisig N, Giurfa M, Sandoz JC (2010) Antennal lobe processing increases separability of odor mixture representations in the honeybee. J Neurophysiol 103:2185–2194

    Article  PubMed  Google Scholar 

  7. Ditzen M, Evers JF, Galizia CG (2003) Odor similarity does not influence the time needed for odor processing. Chem Senses 28:781–789

    Article  PubMed  Google Scholar 

  8. Esslen J, Kaissling KE (1976) Zahl und Verteilung antennaler Sensillen bei der Honigbiene (Apis mellifera L.). Zoomorphology 83:227–251

    Article  Google Scholar 

  9. Flanagan D, Mercer AR (1989) Morphology and response characteristics of neurones in the deutocerebrum of the brain in the honeybee Apis mellifera. J Comp Physiol A 164:483–494

    Article  Google Scholar 

  10. Fonta C, Sun XJ, Masson C (1993) Morphology and spatial distribution of bee antennal lobe interneurones responsive to odours. Chem Senses 18(2):101–119

    Article  Google Scholar 

  11. Galizia CG (2008) Insect olfaction. In: Smith DV, Firestein S, Beauchamp GK (eds) The senses, a comprehensive reference. Elsevier, London, pp 725–769

    Chapter  Google Scholar 

  12. Galizia CG, Kimmerle B (2004) Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A 190:21–38

    Article  PubMed  CAS  Google Scholar 

  13. Galizia CG, McIlwrath SL, Menzel R (1999) A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired using confocal microscopy. Cell Tissue Res 295:383–394

    Article  PubMed  CAS  Google Scholar 

  14. Getz WM, Smith KB (1991) Olfactory perception in honeybees: concatenated and mixed odorant stimuli, concentration, and exposure effects. J Comp Physiol A 169:215–230

    Article  Google Scholar 

  15. Guerrieri F, Schubert M, Sandoz JC, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3:e60

    Article  PubMed  Google Scholar 

  16. Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63

    Article  Google Scholar 

  17. Jefferis GS, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR Jr, Luo L (2007) Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128:1187–1203

    Article  PubMed  CAS  Google Scholar 

  18. Joerges J, Küttner A, Galizia CG, Menzel R (1997) Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387:285–288

    Article  CAS  Google Scholar 

  19. Kirschner S, Kleineidam CJ, Zube C, Rybak J, Grünewald B, Rössler W (2006) Dual olfactory pathway in the honeybee, Apis mellifera. J Comp Neurol 499:933–952

    Article  PubMed  Google Scholar 

  20. Kramer E (1976) The orientation of walking honeybees in odour fields with small concentration gradients. Physiol Entomol 1:27–37

    Article  Google Scholar 

  21. Krofczik S, Menzel R, Nawrot MP (2009) Rapid odor processing in the honeybee antennal lobe network. Front Comput Neurosci 2:9

    Google Scholar 

  22. Lacher V, Schneider D (1963) Elektrophysiologischer Nachweis der Riechfunktion von Porenplatten (Sensilla placodea) auf den Antennen der Drohne und der Arbeitsbiene (Apis mellifera L.). Z vergl Physiol 47:274–278

    Article  Google Scholar 

  23. Laska M, Galizia CG, Giurfa M, Menzel R (1999) Olfactory discrimination ability and odor structure-activity relationships in honeybees. Chem Senses 24:429–438

    Article  PubMed  CAS  Google Scholar 

  24. Mauelshagen J (1993) Neural correlates of olfactory learning paradigms in an identified ­neuron in the honeybee brain. J Neurophysiol 69:609–625

    PubMed  CAS  Google Scholar 

  25. Menzel R, Greggers U, Hammer M (1993) Functional organization of appetitive learning and memory in a generalist pollinator, the honey bee. In: Lewis AC (ed) Insect learning. Chapman & Hall, New York/London, pp 79–125

    Chapter  Google Scholar 

  26. Mobbs PG (1982) The brain of the honeybee Apis mellifera I.The connections and spatial organization of the mushroom bodies. Philos Trans R Soc Lond B 298:309–354

    Article  Google Scholar 

  27. Müller D, Abel R, Brandt R, Zockler M, Menzel R (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J Comp Physiol A 188:359–370

    Article  PubMed  Google Scholar 

  28. Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci 27:11736–11747

    Article  PubMed  CAS  Google Scholar 

  29. Pelz C, Gerber B, Menzel R (1997) Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. J Exp Biol 200:837–847

    PubMed  CAS  Google Scholar 

  30. Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365

    Article  PubMed  CAS  Google Scholar 

  31. Pham-Delègue MH, Etiévant P, Guichard E, Masson C (1989) Sunflower volatiles involved in honeybee discrimination among genotypes and flowering stages. J Chem Ecol 15:329–343

    Article  Google Scholar 

  32. Pham-Delègue MH, Bailez O, Blight MM, Masson C, Picard-Nizou AL, Wadhams LJ (1993) Behavioral discrimination of oilseed rape volatiles by the honeybee Apis mellifera L. Chem Senses 18:483–494

    Article  Google Scholar 

  33. Reinhard J, Sinclair M, Srinivasan MV, Claudianos C (2010) Honeybees learn odour mixtures via a selection of key odorants. PLoS One 5:e9110

    Article  PubMed  Google Scholar 

  34. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403

    Article  PubMed  CAS  Google Scholar 

  35. Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. J Comp Neurol 334:444–465

    Article  PubMed  CAS  Google Scholar 

  36. Sachse S, Galizia CG (2002) The Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117

    PubMed  Google Scholar 

  37. Sachse S, Galizia CG (2003) The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur J Neurosci 18:2119–2132

    Article  PubMed  Google Scholar 

  38. Sachse S, Rappert A, Galizia CG (1999) The Spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. Eur J Neurosci 11:3970–3982

    Article  PubMed  CAS  Google Scholar 

  39. Sandoz JC, Pham-Delegue MH, Renou M, Wadhams LJ (2001) Asymmetrical generalisation between pheromonal and floral odours in appetitive olfactory conditioning of the honey bee (Apis mellifera L.). J Comp Physiol A 187:559–568

    Article  PubMed  CAS  Google Scholar 

  40. Smith BH (1998) Analysis of interaction in binary odorant mixtures. Physiol Behav 65:397–407

    Article  PubMed  CAS  Google Scholar 

  41. Smith BH, Menzel R (1989) The use of electromyogram recordings to quantify odourant discrimination in the honey bee, Apis mellifera. J Insect Physiol 35:369–375

    Article  CAS  Google Scholar 

  42. Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74

    Article  PubMed  CAS  Google Scholar 

  43. Strausfeld NJ (2002) Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. J Comp Neurol 450:4–33

    Article  PubMed  Google Scholar 

  44. Szyszka P, Ditzen M, Galkin A, Galizia CG, Menzel R (2005) Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J Neurophysiol 94:3303–3313

    Article  PubMed  Google Scholar 

  45. Vareschi E (1971) Duftunterscheidung bei der Honigbiene - Einzelzell-Ableitungen und Verhaltensreaktionen. Z vergl Physiol 75:143–173

    Google Scholar 

  46. Vergoz V, Roussel E, Sandoz JC, Giurfa M (2007) Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS One 2:e288

    Article  PubMed  Google Scholar 

  47. von Frisch K (1919) Über den Geruchsinn der Biene und seine blütenbiologische Bedeutung. Zoologisches Jahrbuch Teil Physiologie 37:1–238

    Google Scholar 

  48. Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102(2):147–159

    Article  PubMed  CAS  Google Scholar 

  49. Wadhams LJ, Blight MM, Kerguelen V, Métayer ML, Marion-Poll F, Masson C, Pham-Delègue MH, Woodcock CM (1994) Discrimination of oilseed rape volatiles by honey bee: novel combined gas chromatographic-electrophysiological behavioral assay. J Chem Ecol 20:3221–3231

    Article  CAS  Google Scholar 

  50. Wright GA, Smith BH (2004) Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera). Chem Senses 29:127–135

    Article  PubMed  Google Scholar 

  51. Yamagata N, Schmuker M, Szyszka P, Mizunami M, Menzel R (2009) Differential odor processing in two olfactory pathways in the honeybee. Front Syst Neurosci 3:16

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Sandoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sandoz, JC. (2012). Olfaction in Honey Bees: From Molecules to Behavior. In: Galizia, C., Eisenhardt, D., Giurfa, M. (eds) Honeybee Neurobiology and Behavior. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2099-2_19

Download citation

Publish with us

Policies and ethics