Skip to main content

The Spirit of the Hive and How a Superorganism Evolves

  • Chapter
  • First Online:
Honeybee Neurobiology and Behavior

Abstract

Social insects presented Darwin (1859) with major difficulties for his fledgling theory of evolution by natural selection. How could differential survival and reproduction result in sterility, differential anatomy and behavior between sterile workers and queens, and differentiation among the sterile individuals of a colony? Maurice Maeterlink, Belgian author and Nobel Laureate, wrote (in 1901) about the “inverted city” of the honey bee noting that there is no central authority, that order and organization is achieved mysteriously through what he called the “spirit of the hive” [Maeterlink M, The life of the bee. Dodd, Mead, and Company, New York, 1913]. William Morton Wheeler [J Morphol 22:307–325, 1911; The social insects. Harcourt, Brace and company, New York, 1928], Harvard entomologist and philosopher, proposed that insect societies are true “superorganisms” because they are organized for nutrition, reproduction and defense, a view that was initially supported by biologists but lost favor by the early 1970s. Hölldobler and Wilson resurrected the superorganism in their book The Superorganism: the Beauty, Elegance, and Strangeness of Insect Societies [W. W. Norton, New York, 2008]. However, fundamental questions remain about the evolution of insect societies as superorganisms. Not only is there order without central control (the spirit of the hive), there is also no central genome on which natural selection can operate to sculpt a social system. Here, I will locate and define the honey bee “spirit of the hive” and show how selection operating on social traits involved in colony nutrition, a superorganismal trait of Wheeler, changes the genome, development, physiology, and behavior of individual workers that affect the “spirit of the hive” and, therefore, social organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

dsRNA:

double stranded RNA

QTL:

Quantitative trait loci

References

  1. Amdam GV, Csondes A, Fondrk MK, Page RE Jr (2006) Complex social behaviour derived from maternal reproductive traits. Nature 439(7072):76–78

    Article  PubMed  CAS  Google Scholar 

  2. Amdam GV, Ihle KE, Page RE (2009) Regulation of honeybee worker (Apis mellifera) life histories by Vitellogenin. In: Donald WP, Arthur PA, Anne ME, Susan EF, Robert TR (eds) Hormones, brain and behavior, vol 2, 2nd edn. Academic, San Diego, pp 1003–1025

    Chapter  Google Scholar 

  3. Amdam GV, Norberg K, Fondrk MK, Page RE Jr (2004) Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. Proc Natl Acad Sci USA 101(31):11350–11355

    Article  PubMed  CAS  Google Scholar 

  4. Amdam GV, Norberg K, Page RE Jr, Erber J, Scheiner R (2006) Downregulation of vitellogenin gene activity increases the gustatory responsiveness of honey bee workers (Apis mellifera). Behav Brain Res 169(2):201–205

    Article  PubMed  CAS  Google Scholar 

  5. Amdam GV, Page RE (2010) The developmental genetics and physiology of honeybee societies. Anim Behav 79(5):973–980

    Article  PubMed  Google Scholar 

  6. Amdam GV, Page RE Jr, Fondrk MK, Brent CS (2010) Hormone response to bidirectional selection on social behavior. Evol Dev 12(5):428–436

    Article  PubMed  CAS  Google Scholar 

  7. Capella ICS, Hartfelder K (1998) Juvenile hormone effect on DNA synthesis and apoptosis in caste-specific differentiation of the larval honey bee (Apis mellifera L.) ovary. J Insect Physiol 44(5–6):385–391

    Article  PubMed  CAS  Google Scholar 

  8. Darwin C (1998) The origin of species by means of natural selection, or, the preservation of favored races in the struggle for life. 1998 Modern Library edn. Modern Library, New York

    Google Scholar 

  9. Dreller C, Page RE, Fondrk MK (1999) Regulation of pollen foraging in honeybee colonies: effects of young brood, stored pollen, and empty space. Behav Ecol Sociobiol 45(3–4):227–233

    Article  Google Scholar 

  10. Dreller C, Tarpy DR (2000) Perception of the pollen need by foragers in a honeybee colony. Anim Behav 59(1):91–96

    Article  PubMed  Google Scholar 

  11. Fewell JH, Page RE (2000) Colony-level selection effects on individual and colony foraging task performance in honeybees, Apis mellifera L. Behav Ecol Sociobiol 48(3):173–181

    Article  Google Scholar 

  12. Fewell JH, Winston ML (1992) Colony state and regulation of pollen foraging in the honey-bee, Apis mellifera L. Behav Ecol Sociobiol 30(6):387–393

    Article  Google Scholar 

  13. Hölldobler B, Wilson EO (2008) The superorganism: the beauty, elegance and strangeness of insect societies. W. W. Norton, New York

    Google Scholar 

  14. Humphries MA, Müller U, Fondrk MK, Page RE Jr (2003) PKA and PKC content in the honey bee central brain differs in genotypic strains with distinct foraging behavior. J Comp Physiol A 189(7):555–562

    Article  PubMed  CAS  Google Scholar 

  15. Hunt GJ, Page RE, Fondrk MK, Dullum CJ (1995) Major quantitative trait loci affecting honey-bee foraging behavior. Genetics 141(4):1537–1545

    PubMed  CAS  Google Scholar 

  16. Ihle KE, Page RE, Frederick K, Fondrk MK, Amdam GV (2010) Genotype effect on regulation of behaviour by vitellogenin supports reproductive origin of honeybee foraging bias. Anim Behav 79(5):1001–1006

    Article  PubMed  Google Scholar 

  17. Laidlaw HH, Page RE (1997) Queen rearing and bee breeding, 1st edn. Wicwas Press, Cheshire

    Google Scholar 

  18. Le Conte Y, Mohammedi A, Robinson GE (2001) Primer effects of a brood pheromone on honeybee behavioural development. Proc R Soc B 268(1463):163–168

    Article  PubMed  Google Scholar 

  19. Linksvayer TA, Rueppell O, Siegel A, Kaftanoglu O, Page RE Jr et al (2009) The genetic basis of transgressive ovary size in honeybee workers. Genetics 183(2):693–707, 691SI-613SI

    Article  PubMed  Google Scholar 

  20. Maeterlink M (1913) The life of the bee. Dodd, Mead, and Company, New York

    Google Scholar 

  21. Nelson CM, Ihle KE, Fondrk MK, Page RE, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5(3):e62

    Article  PubMed  Google Scholar 

  22. Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Nature 466(7310):1057–1062

    Article  PubMed  CAS  Google Scholar 

  23. Page RE, Erber J (2002) Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften 89(3):91–106

    Article  PubMed  CAS  Google Scholar 

  24. Page RE, Erber J, Fondrk MK (1998) The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J Comp Physiol A 182(4):489–500

    Article  Google Scholar 

  25. Page RE, Fondrk MK (1995) The effects of colony level selection on the social-organization of honey-bee (Apis mellifera L) colonies – colony level components of pollen hoarding. Behav Ecol Sociobiol 36(2):135–144

    Article  Google Scholar 

  26. Page RE Jr, Amdam GV (2007) The making of a social insect: developmental architectures of social design. Bioessays 29(4):334–343

    Article  PubMed  CAS  Google Scholar 

  27. Page RE, Scheiner R, Erber J, Amdam GV (2006) The development and evolution of division of labor and foraging specialization in a social insect (Apis mellifera L.). Curr Top Dev Biol 74:253–286

    Article  PubMed  CAS  Google Scholar 

  28. Pankiw T (2003) Directional change in a suite of foraging behaviors in tropical and temperate evolved honey bees (Apis mellifera L.). Behav Ecol Sociobiol 54(5):458–464

    Article  Google Scholar 

  29. Pankiw T, Nelson M, Page RE, Fondrk MK (2004) The communal crop: modulation of sucrose response thresholds of pre-foraging honey bees with incoming nectar quality. Behav Ecol Sociobiol 55(3):286–292

    Article  Google Scholar 

  30. Pankiw T, Page RE (1999) The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J Comp Physiol A 185(2):207–213

    Article  CAS  Google Scholar 

  31. Pankiw T, Page RE (2000) Response thresholds to sucrose predict foraging division of labor in honeybees. Behav Ecol Sociobiol 47(4):265–267

    Article  Google Scholar 

  32. Pankiw T, Page RE (2001) Genotype and colony environment affect honeybee (Apis mellifera L.) development and foraging behavior. Behav Ecol Sociobiol 51(1):87–94

    Article  Google Scholar 

  33. Pankiw T, Page RE, Fondrk MK (1998) Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behav Ecol Sociobiol 44(3):193–198

    Article  Google Scholar 

  34. Pankiw T, Waddington KD, Page RE (2001) Modulation of sucrose response thresholds in honey bees (Apis mellifera L.): influence of genotype, feeding, and foraging experience. J Comp Physiol A 187(4):293–301

    Article  CAS  Google Scholar 

  35. Rueppell O, Chandra SBC, Pankiw T, Fondrk MK, Beye M et al (2006) The genetic architecture of sucrose responsiveness in the honeybee (Apis mellifera L.). Genetics 172(1):243–251

    Article  PubMed  CAS  Google Scholar 

  36. Rueppell O, Pankiw T, Nielsen DI, Fondrk MK, Beye M et al (2004) The genetic architecture of the behavioral ontogeny of foraging in honeybee workers. Genetics 167(4):1767–1779

    Article  PubMed  CAS  Google Scholar 

  37. Scheiner R, Erber J, Page RE (1999) Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). J Comp Physiol A 185(1):1–10

    Article  CAS  Google Scholar 

  38. Scheiner R, Kuritz-Kaiser A, Menzel R, Erber J (2005) Sensory responsiveness and the effects of equal subjective rewards on tactile learning and memory of honeybees. Learn Mem 12(6):626–635

    Article  PubMed  Google Scholar 

  39. Scheiner R, Page RE, Erber J (2001) The effects of genotype, foraging role, and sucrose responsiveness on the tactile learning performance of honey bees (Apis mellifera L.). Neurobiol Learn Mem 76(2):138–150

    Article  PubMed  CAS  Google Scholar 

  40. Scheiner R, Page RE, Erber J (2001) Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains. Behav Brain Res 120(1):67–73

    Article  PubMed  CAS  Google Scholar 

  41. Scheiner R, Page RE, Erber J (2004) Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie 35(2):133–142

    Article  Google Scholar 

  42. Schulz DJ, Pankiw T, Fondrk MK, Robinson GE, Page RE (2004) Comparisons of juvenile hormone hemolymph and octopamine brain Titers in honey bees (Hymenoptera: Apidae) selected for high and low pollen hoarding. Ann Entomol Soc Am 97(6):1313–1319

    Article  CAS  Google Scholar 

  43. Seeley TD (1995) The wisdom of the hive. Harvard University Press, Cambridge

    Google Scholar 

  44. Tsuruda JM, Amdam GV, Page RE Jr (2008) Sensory response system of social behavior tied to female reproductive traits. PLoS One 3(10):e3397

    Article  PubMed  Google Scholar 

  45. Vaughan DM, Calderone NW (2002) Assessment of pollen stores by foragers in colonies of the honey bee, Apis mellifera L. Insect Soc 49(1):23–27

    Article  Google Scholar 

  46. Wang Y, Amdam GV, Rueppell O, Wallrichs MA, Fondrk MK et al (2009) PDK1 and HR46 gene homologs tie social behavior to ovary signals. PLoS One 4(4):e4899

    Article  PubMed  Google Scholar 

  47. Wang Y, Kaftanoglu O, Siegel AJ, Page RE, Amdam GV (2010) Surgically increased ovarian mass in the honey bee confirms link between reproductive physiology and worker behavior. J Insect Physiol 56(12):1816–1824

    Article  PubMed  CAS  Google Scholar 

  48. Wheeler WM (1911) The ant colony as an organism. J Morphol 22:307–325

    Article  Google Scholar 

  49. Wheeler WM (1926) Social life among the insects. Constable and Company Limited, London

    Google Scholar 

  50. Wheeler WM (1928) The social insects. Harcourt, Brace and Company, New York

    Google Scholar 

  51. Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Page Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Page, R.E. (2012). The Spirit of the Hive and How a Superorganism Evolves. In: Galizia, C., Eisenhardt, D., Giurfa, M. (eds) Honeybee Neurobiology and Behavior. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2099-2_1

Download citation

Publish with us

Policies and ethics