Skip to main content

Relativistic Theory of Cooperative Muon – γ-Nuclear Processes: Negative Muon Capture and Metastable Nucleus Discharge

  • Chapter
  • First Online:
Advances in the Theory of Quantum Systems in Chemistry and Physics

Abstract

We present a new consistent energy approach to calculation of the cross-section for the negative muon capture by an atom, based on the relativistic many-body perturbation (PT) theory. The calculation results for cross-section of the μcapture by He atom are listed. It is presented a generalized energy approach in the relativistic theory of discharge of a metastable nucleus with emission of γ quantum and further muon conversion, which initiates this discharge. The numerical calculation of the corresponding probabilities is firstly carried out for the scandium nucleus (A = 49, N = 21) with using the Dirac-Woods-Saxon model. The theoretical and experimental studying the muon-γ-nuclear interaction effects opens prospects for nuclear quantum optics, probing the structural features of a nucleus and muon spectroscopy in atomic and molecular physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tiomno JJ, Weller JA (1949) Rev Mod Phys 21:153; Zaretsky DF, Novikov V (1960) Nucl Phys 14:540; Foldi LL, Walecka JD (1964) Nuovo Cim 34:1026

    Google Scholar 

  2. Baker GA (1960) Phys Rev 117:1130; Mann R, Rose M (1961) Phys Rev 121:293; Leon M, Miller J (1977) Nucl Phys A282:461; Cherepkov N, Chernysheva L (1980) J Nucl Phys 32:709; Cohen J, Leon M (1985) Phys Rev Lett 55:52; Cohen J (2004) Phys Rev A 69:022501

    Google Scholar 

  3. Haff P, Tombrello T (1974) Ann Phys 86:178; Vogel P, Haff P, Akylas V, Winther A (1975) Nucl Phys A 254:445; Vogel P, Winther A, Akylas V (1977) Phys Lett B70:39

    Google Scholar 

  4. Naumannm RA, Schmidt G, Knight JD, Mausner LF, Orth CJ, Schillaci ME (1980) Phys Rev A 21:639; Auerbach N, Klein A (1984) Nucl Phys A 422:480; Kolbe E, Langanke K, Vogel P (2006) Phys Rev C 62:055502

    Google Scholar 

  5. Ponomarev L, Fiorentini G (1987) Muon Cat Fus 1:3; Ponomarev L, Gerstain S, Petrov Y (1990) Phys -Usp 160:3; Kravtsov A, Mikhailov A (1994) Phys Rev A49:3566

    Google Scholar 

  6. Dykhne A, Yudin G (1996) Sudden perturbation and quantum evolution. UFN, Moscow; Lauss B (2009) Nucl Phys A 827:401; Gazit D (2009) Nucl Phys A 827:408

    Google Scholar 

  7. Kaplan IG, Smutny VN (1988) Adv Quantum Chem 19:289; Kaplan IG, Markin AP (1977) Reports of the USSR Acad Sci 232:319; (1975) JETP 69:9

    Google Scholar 

  8. Takahashi K, Boyd R, Mathews G, Yokoi K (1987) Phys Rev C 36:1522; Mikheev V, Morozov V, Morozova N (2008) Phys Part Nucl Lett 5:371; Vysotskii VI (1998) Phys Rev C 58:337

    Google Scholar 

  9. Mössbauer RM (1958) Z Phys A: Hadrons Nuclei 151:124; Szilard L, Chalmers T (1934) Nature (London) 134:462

    Google Scholar 

  10. Migdal AB (1941) J Phys USSR 4:449; Levinger JS (1953) Phys Rev 90:11

    Google Scholar 

  11. Cioccheti G, Molinari A (1965) Nuovo Cim 40:69; Carlson T, Nestor CW, Tucker TC, Malik FB (1968) Phys Rev 169:27

    Google Scholar 

  12. Amudsen P, Barker PH (1994) Phys Rev C 50:2466; Anholt R, Amundsen P (1982) Phys Rev A 25:169

    Google Scholar 

  13. Wolfgang RL, Anderson R, Dodson RW (1956) J Chem Phys 24:16; Martin RL, Cohen JS (1985) Phys Lett A 110: 95

    Google Scholar 

  14. Hansen JS (1974) Phys Rev A 9:40; Law J (1977) Nucl Phys A 286:339; (1980) Can J Phys 58:504; Law J, Campbell JL (1982) Phys Rev C 25:514

    Google Scholar 

  15. Mukoyama T, Ito S (1988) Phys Lett A 131:182; Mukoyama T, Shimizu S (1978) J Phys G: Nucl Part 4:1509

    Google Scholar 

  16. Kienle P (1993) Phys Scripta 46:81; Wauters L, Vaeck N (1996) Phys Rev C 53:497; Wauters L, Vaeck N, Godefroid M, van der Hart H, Demeur M (1997) J Phys B30:4569

    Google Scholar 

  17. Glushkov AV, Makarov I, Nikiforova E, Pravdin M, Sleptsov I (1995) Astroparticle Phys 4:15; Glushkov AV, Dedenko L, Pravdin M, Sleptsov I (2004) JETP 99:123

    Google Scholar 

  18. Baldwin GG, Salem JC, Gol’dansky VI (1981) Rev Mod Phys 53:687; Letokhov VS (1979) In: Prokhorov AM, Letokhov VS (eds) Application of lasers in atomic, molecular and nuclear physics. Nauka, Moscow, p 412

    Google Scholar 

  19. Letokhov VS, Gol’dansky VI (1974) JETP 67:513; Ivanov LN, Letokhov VS (1976) JETP 70:19; Ivanov LN, Letokhov VS (1985) Com Mod Phys D 4:169; Glushkov AV, Ivanov LN, Letokhov VS (1991) Nuclear quantum optics, Preprint of Inst. for Spectroscopy of USSR Academy of Sciences (ISAN), N5 Troitsk, pp 1–18

    Google Scholar 

  20. Glushkov AV, Khetselius OYu, Lovett L (2010) In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Advances in the theory of atomic and molecular systems dynamics, spectroscopy, clusters, and nanostructures. Progress in theoretical chemistry and physics, vol 20. Springer, Berlin, pp 125–172

    Google Scholar 

  21. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics, progress in theoretical chemistry and physics, vol 18. Springer, Berlin, p 523; (2008) Eur Phys J ST 160:195; (2008) Mol Phys 106:1257

    Google Scholar 

  22. Glushkov AV, Malinovskaya S, Vitavetskaya L, Dubrovskaya Yu (2006) In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Recent advances in theoretical physics and chemistry systems, progress in theoretical chemistry and physics, vol 15. Springer, Berlin, pp 301–318; Glushkov A, Malinovskaya S, Gurnitskaya E, Khetselius O (2006) J Phys CS 35:426

    Google Scholar 

  23. Shahbaz A, Müller C, Bürvenich TJ, Keitel CH (2009) Nucl Phys A 821:106; Müller C, Di Piazza A, Shahbaz A, Bürvenich TJ, Evers J, Hatsagortsyan HZ, Keitel CH (2008) Laser Physics 11:175; Shahbaz A, Müller C, Staudt A, Burnevich TJ, Keitel CH (2007) Phys Rev Lett 98:263901; Burnevich TJ, Evers J, Keitel CH (2006) Phys Rev C 74:044601; (2006) Phys Rev Lett 96:142501

    Google Scholar 

  24. Romanovsky M (1998) Laser Phys 1:17; Harston MR, Caroll JJ (2004) Laser Phys 7:1452; Tkalya EV (2007) Phys Rev A 75:022509

    Google Scholar 

  25. Ahmad I, Dunfird R, Esbensen H, Gemmell DS, Kanter EP, Run U, Siuthwirth SH (2000) Phys Rev C 61:051304; Kishimoto S, Yoda Y, Kobayashi Y, Kitao S, Haruki R, Masuda R, Seto M (2006) Phys Rev C 74:031301

    Google Scholar 

  26. Olariu S, Sinor T, Collins C (1994) Phys Rev B 50:616; Glushkov AV, Ivanov LN (1991) Preprint of Institute for Spectroscopy of USSR Academy of Sciences (ISAN), N-2AS; Glushkov AV, Svinarenko A (2010) Sensor Electron Microsyst Technol 1:13

    Google Scholar 

  27. Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow; Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33; Glushkov AV (1992) JETP Lett 55:97

    Google Scholar 

  28. Ivanov LN, Ivanova EP, Knight L (1993) Phys Rev A 48:4365; Ivanova EP, Ivanov LN, Aglitsky EV (1988) Phys Rep 166:315; Ivanova EP, Ivanov LN (1996) JETP 83:258; Ivanova EP, Grant IP (1998) J Phys B 31:2871

    Google Scholar 

  29. Ivanova EP, Ivanov LN, Glushkov AV, Kramida A (1985) Phys Scripta 32:512; Glushkov AV, Ivanova EP (1986) J Quant Spectr Rad Transfer 36:127

    Google Scholar 

  30. Glushkov AV, Khetselius OYu, Loboda AV, Svinarenko AA (2008) In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics, progress in theoretical chemistry and physics, vol 18. Springer, Berlin, p 541; Glushkov AV, Loboda AV, Gurnitskaya EP, Svinarenko AA (2009) Phys Scripta T 134:137740

    Google Scholar 

  31. Glushkov AV, Malinovskaya SV, Loboda AV, Gurnitskaya EP, Korchevsky DA (2005) J Phys: Conf Ser 11:188; Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Prepelitsa GP (2005) Int J Quantum Chem 104:562; Glushkov A, Malinovskaya S, Prepelitsa G, Ignatenko V (2004) J Phys CS 11:199

    Google Scholar 

  32. Glushkov AV (1989) Opt Spectr (USSR) 66:31; (1991) 70:952; (1991) 71:395; (1992) 72:55; (1992) 72:542; (1992) Russ J Phys Chem 66:589; (1992) 66:1259; (1992) Russ J Struct Chem 32:11; (1993) 34:3

    Google Scholar 

  33. Glushkov AV, Khetselius OYu, Gurnitskaya EP, Loboda AV, Florko TA, Sukharev DE, Lovett L (2008) In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics, progress in theoretical chemistry and physics, vol 18. Springer, Berlin, p 505

    Google Scholar 

  34. Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Khetselius OYu (2006) In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Recent advances in theoretical physics and chemistry systems, progress in theoretical chemistry and physics, vol 15. Springer, Berlin, p 285

    Google Scholar 

  35. Glushkov A, Malinovskaya S, Loboda A, Prepelitsa G (2006) J Phys: Conf Ser 35:420; Glushkov AV, Malinovskaya SV, Chernyakova Yu G, Svinarenko AA (2004) Int J Quantum Chem 99:889; (2005) Int J Quantum Chem 104:496

    Google Scholar 

  36. Kohn W, Sham LJ (1964) Phys Rev A 140:1133; Hohenberg P, Kohn W (1964) Phys Rev B 136:864; Feller D, Davidson ER (1981) J Chem Phys 74:3977

    Google Scholar 

  37. Gunnarsson O, Lundqvist B (1976) Phys Rev B 13:4274; Das M, Ramana M, Rajagopal A (1980) Phys Rev 22:9; Schmid R, Engel E, Dreizler RM (1995) Phys Rev C 52:164; Dreizler RM, Gross EKU (1990) Density FT. Springer, Berlin

    Google Scholar 

  38. Hehenberger M, McIntosh H, Brändas E (1974) Phys Rev A 10:1494; Glushkov AV, Ivanov LN (1993) J Phys B: At Mol Opt Phys 26:L379; Glushkov AV, Ambrosov S, Ignatenko A, Korchevsky D (2004) Int J Quantum Chem 99:936

    Google Scholar 

  39. Grant IP (2007) Relativistic quantum theory of atoms and molecules, theory and computation, vol 40. Springer, Berlin, p 587

    Book  Google Scholar 

  40. Dyall KG, Faegri K Jr (2007) Introduction to relativistic quantum theory. OUP, Oxford

    Google Scholar 

  41. Glushkov AV (2008) Relativistic quantum theory. Quantum mechanics of atomic systems. Astroprint, Odessa; Rusov VD, Tarasov V, Litvinov D (2008) Theory of beta processes in georeactor. URS, Moscow

    Google Scholar 

  42. Wilson S (2007) In: Maruani J, Lahmar S, Wilson S, Delgado-Barrio G (eds) Recent advances in theoretical physics and chemistry systems, progress in theoretical chemistry and physics, vol 16. Springer, Berlin, p 11

    Google Scholar 

  43. Mohr P (1993) Atom Dat Nucl Dat Tables 24:453; Santos J, Parenre F, Boucard S, Indelicato P, Desclaux J (2005) Phys Rev A 71:032501; Sapirstein J, Cheng KT (2005) Phys Rev A 71:022503

    Google Scholar 

  44. Safranova UI, Safranova MS, Johnson W (2005) Phys Rev A71:052506; Shabaev V, Tupitsyn I, Pachucki K, Plunien G, Yerokhin VA (2005) Phys Rev A 72:062105; Dzuba V, Flambaum V, Safranova M (2006) Phys Rev A73:022112

    Google Scholar 

  45. Bohr O, Motelsson B (1971) Structure of atomic nucleus. Plenum, New York; Ring P, Schuck P (2000) The nuclear many-body problem. Springer, Heidelberg; (2010) In: Yang F, Hamilton JH (eds) Fundamentals of nuclear models. World Scientific, Singapore

    Google Scholar 

  46. Serot B, Walecka J (1986) Adv Nucl Phys 16:1; Bender M, Heenen P, Reinhard P (2003) Rev Mod Phys 75:121; Bloumkvist J, Wahlborn S (1960) Ark Fysic 16:545

    Google Scholar 

  47. Glushkov AV (2007) In: Krewald S, Machner H (eds) Meson-nucleon physics and the structure of the nucleon. IKP, Juelich. SLAC eConf C070910 Menlo Park 2:111; Glushkov AV, Khetselius OYu, Loboda AV, Malinovskaya SV (2007) ibid 2:118; Glushkov A, Lovett L, Khetselius O, Loboda A, Dubrovskaya Yu, Gurnitskaya E (2009) Int J Modern Phys A Part, Fields, Nucl Phys 24:611

    Google Scholar 

  48. Glushkov AV, Rusov VD, Ambrosov S, Loboda A (2003) In: Fazio G, Hanappe F (eds) New projects and new lines of research in nuclear phys. World Scientific, Singapore, p 126; Zagrebaev V, Oganessian Yu, Itkis M, Greiner W (2006) Phys Rev C 73:031602

    Google Scholar 

  49. Behr J, Gwinner G (2009) J Phys G: Nucl Part 36:033101; Kettner K, Becker H, Strieder F, Rolfs C (2006) J Phys G: Nucl Part 32:489; Godovikov S (2001) RAN Izv Ser Phys 65:1063; Zinner N (2007) Nucl Phys A 781:81

    Google Scholar 

  50. Glushkov AV, Malinovskaya SV (2003) In: Fazio G, Hanappe F (eds) New projects and new lines of research in nuclear phys. World Scientific, Singapore, p 242; Glushkov A (2005) In: Grzonka D, Czyzykiewicz R, Oelert W, Rozek T, Winter P (eds) Low energy antiproton Phys. AIP, Melville, NY, 796:206

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. P. E. Hoggan for his invitation to the workshop QSCP-XV (Cambridge, UK). Authors are grateful to Drs. E. P. Ivanova, L. N. Ivanov, V. S. Letokhov, W. Kohn, E. Brandas, J. Maruani, S. Wilson, I. Kaplan, S. Malinovskaya, A. Theo-philou for useful comments. The support of the Institute for Spectroscopy (Russian Academy of Sciences, Troitsk, Russia), Universities of Geneva and Frieburg (Switzerland, Germany) is acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Glushkov, A.V., Khetselius, O.Y., Svinarenko, A.A. (2012). Relativistic Theory of Cooperative Muon – γ-Nuclear Processes: Negative Muon Capture and Metastable Nucleus Discharge. In: Hoggan, P., Brändas, E., Maruani, J., Piecuch, P., Delgado-Barrio, G. (eds) Advances in the Theory of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2076-3_3

Download citation

Publish with us

Policies and ethics