Skip to main content

Centre-of-Mass Separation in Quantum Mechanics: Implications for the Many-Body Treatment in Quantum Chemistry and Solid State Physics

  • Chapter
  • First Online:
Advances in the Theory of Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 22))

Abstract

We address the question to what extent the centre-of-mass (COM) separation can change our view of the many-body problem in quantum chemistry and solid-state physics. We show that the many-body treatment based on the electron-vibrational Hamiltonian is fundamentally inconsistent with the Born-Handy ansatz so that such a treatment can never fully account for the COM problem. The Born-Oppenheimer (B-O) approximation reveals a secret: it is the limiting case where the degrees of freedom can be treated classically. Beyond the B-O approximation they are in principle inseparable. The (unique) covariant description of all the equations, with respect to the individual degrees of freedom, leads to new types of interactions: in addition to the known vibronic (electron-phonon) ones the rotonic (electron-roton) and translonic (electron-translon) interactions arise. We have proved that as a result of the COM problem only the hypervibrations (hyperphonons, i.e. phonons + rotons + translons) have a general physical meaning in molecules and crystals; nevertheless, the use of pure vibrations (phonons) is a justified procedure only for so-called adiabatic systems. This state of affairs calls for a total revision of our contemporary view of general non-adiabatic effects, especially in connection with the Jahn-Teller effect and in formulating better approaches to superconductivity. Although the vibronic coupling is primarily responsible for the removal of the electron (quasi-) degeneracies the explanation of symmetry breaking and the formation of molecular and crystallic structures, rotonic and translonic couplings are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Born M, Oppenheimer R (1927) Ann Phys (Leipzig) 84:457

    CAS  Google Scholar 

  2. Primas H, Müller-Herold U (1984) Elementare Quantenchemie. Teubner, Stuttgart, p 147 ff

    Google Scholar 

  3. Monkhorst HJ (1999) Int J Quant Chem 72:281

    Article  CAS  Google Scholar 

  4. Cafiero M, Adamowicz L (2004) Chem Phys Letters 387:136–141

    Article  CAS  Google Scholar 

  5. Kutzelnigg W (1997) Mol Phys 90:909

    Article  CAS  Google Scholar 

  6. Handy NC, Lee AM (1996) Chem Phys Lett 252:425

    Article  CAS  Google Scholar 

  7. Jahn HA, Teller E (1937) Proc R Soc Lond A 161:220

    Article  CAS  Google Scholar 

  8. Bersuker IB (2006) The Jahn-Teller effect. Cambridge University Press, Cambridge, England

    Book  Google Scholar 

  9. Fröhlich H (1950) Phys Rev 79:845

    Article  Google Scholar 

  10. Fröhlich H (1952) Proc R Soc Lond A215:291

    Google Scholar 

  11. Bardeen J, Cooper LN, Schrieffer JR (1957) Phys Rev 108:1175

    Article  CAS  Google Scholar 

  12. Svrček M (1986) Faculty of mathematics and physics. PhD thesis, Comenius University, Bratislava

    Google Scholar 

  13. Svrček M (1988) The break down of Born-Oppenheimer approximation, the unifying formalism for quantum chemistry and solid-state theory, unpublished

    Google Scholar 

  14. Hubač I, Svrček M (1988) Int J Quant Chem 23:403

    Google Scholar 

  15. Hubač I, Svrček M, Salter EA, Sosa C, Bartlett RJ (1988) Lecture notes in chemistry, vol 52. Springer, Berlin, pp 95–124

    Google Scholar 

  16. Svrček M, Hubač I (1991) Czech J Phys 41:556

    Article  Google Scholar 

  17. Svrček M (1992) Methods in computational chemistry. In: Molecular vibrations, vol 4. Plenum Press, New York, pp 145–230

    Google Scholar 

  18. Svrček M, Baňacký P, Zajac A (1992) Int J Quant Chem 43:393

    Article  Google Scholar 

  19. Svrček M, Banacký P, Zajac A (1992) Int J Quant Chem 43:415

    Article  Google Scholar 

  20. Svrček M, Baňacký P, Zajac A (1992) Int J Quant Chem 43:425

    Article  Google Scholar 

  21. Svrček M, Baňacký P, Zajac A (1992) Int J Quant Chem 43:551

    Article  Google Scholar 

  22. Svrček M, Baňacký P, Biskupič S, Noga J, Pelikán P, Zajac A (1999) Chem Phys Lett 299:151

    Article  Google Scholar 

  23. Gerratt J, Mills JM (1968) J Chem Phys 49:1719–1730

    Article  Google Scholar 

  24. Pople JA, Raghavachari K, Schlegel HB, Binkley JS (1979) Int J Quant Chem Symp 13:225

    CAS  Google Scholar 

  25. Kołos W, Wolniewicz W (1964) J Chem Phys 41:3663

    Article  Google Scholar 

  26. Wolniewicz W (1993) J Chem Phys 99:1851

    Article  CAS  Google Scholar 

  27. Kleinman LI, Wolfsberg M (1974) J Chem Phys 60:4749

    Article  CAS  Google Scholar 

  28. Moller C, Plesset MS (1934) Phys Rev 46:618, Sosa

    Google Scholar 

  29. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59

    Article  Google Scholar 

  30. Bersuker IB, Polinger BZ (1983) Vibronic interactions in molecules and crystals (in Russian). Nauka, Moscow

    Google Scholar 

  31. Van Vleck JH (1939) J Chem Phys 7:61

    Article  Google Scholar 

  32. Low W (1960) Paramagnetic resonance in solids. Academic Press, New York

    Google Scholar 

  33. Renner R (1934) Z Phys 92:172

    Article  CAS  Google Scholar 

  34. von Neumann J, Wigner E (1929) Phys Z 30:467

    Google Scholar 

  35. Lee TD, Low FE, Pines D (1953) Phys Rev 90

    Google Scholar 

  36. Wagner M (1981) Phys Stat Sol B107:617

    Google Scholar 

  37. Lenz P, Wegner F (1996) Nucl Phys B 482:693–712

    Article  Google Scholar 

  38. Hanic F, Baňacký P, Svrček M, Jergel M, Smrčok L, Koppelhuber B, unpublished

    Google Scholar 

  39. Yang CN (1962) Rev Mod Phys 34:694

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to express his gratitude to E. Brändas for his valuable advice during compilation of this paper, to O. Šipr for critical reading of the manuscript and useful suggestions and to V. Žárský for constant help and encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Svrček, M. (2012). Centre-of-Mass Separation in Quantum Mechanics: Implications for the Many-Body Treatment in Quantum Chemistry and Solid State Physics. In: Hoggan, P., Brändas, E., Maruani, J., Piecuch, P., Delgado-Barrio, G. (eds) Advances in the Theory of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2076-3_28

Download citation

Publish with us

Policies and ethics