Skip to main content

Footprints of Stress in Communities

  • Chapter
  • First Online:
Stress Ecology
  • 1842 Accesses

Abstract

Environmental stress and degradation can affect individuals, populations, and communities directly and indirectly in obvious ways such as mass mortality, reduced fecundity, or both, ultimately leading to extinction of populations and even entire species. More subtle effects include reduced growth, increased disease susceptibility, and increased rates of morphological anomalies (Allenbach 2011), as well as changes in food-web structures. Overall, there is great interest in understanding and monitoring sub-lethal biological responses that are faithful indicators of environmental stresses. Consequently, this chapter will introduce several phenotypic approaches (fluctuating asymmetry, quality indices, maturity index, species at risk indices) and one theory-based approach (biomass spectra) to assess the integrity of populations, communities, or even ecosystems. Overall, there is a gap between molecular, biological, and biochemical stress identification on the one hand and stress evaluation on higher aggregated levels on the other hand, and this gap does not seem to be easily bridged. Both parts of stress ecology appear to be different disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ecology is an analzing, rather than a moralizing science.

References

  • Allenbach DM, Brown Sullivan K, Lydy MJ (1999) Higher fluctuacting asymmetry as a measure of susceptibility to pesticides in fishes. Environ Toxicol Chem 18:899–905

    Article  CAS  Google Scholar 

  • Beier S, Traunspurger W (2001) The meiofauna community of two small German streams as indicator of pollution. J Aquat Ecos Stress Recov 8:387–405

    Article  CAS  Google Scholar 

  • Beketov MA, Liess M (2008) An indicator for effects of organic toxicants on lotic invertebrate communities: independence of confounding environmental factors over an extensive river continuum. Environ Pollut 156:980–987

    Article  PubMed  CAS  Google Scholar 

  • Benoît E, Rochet MJ (2004) A continuous model of biomass size spectra governed by predation and the effects of fishing on them. J Theor Biol 226:9–21

    Article  PubMed  Google Scholar 

  • Benoît HP, Johannsson OE, Warner DM, Sprules WG, Rudstam LG (2002) Assessing the impact of a recent predatory invader: the population dynamics, vertical distribution, and potential prey of Cercopagis pengoi in Lake Ontario. Limnol Oceanogr 47:626–635

    Article  Google Scholar 

  • Bianchi G, Gislason H, Graham K, Hill L, Jin X, Koranteng K, Manickchand-Heileman S, Payá I, Sainsbury K, Sanchez F, Zwanenburg K (2000) Impact of fishing on size composition and diversity of demersal fish communities. ICES J Mar Sci 57:558–571

    Article  Google Scholar 

  • Bjorksten TA, Fowler K, Pomiankowski A (2000a) What does sexual trait FA tell us about stress? Trends Ecol Evol 99:163–166

    Article  Google Scholar 

  • Blanchard JL, Dulvy NK, Jennings S, Ellis JR, Pinnegar JK, Tidd A, Kell LT (2005) Do climate and fishing influence size-based indicators of Celtic Sea fish community structure? ICES J Mar Sci 62:405–411

    Article  Google Scholar 

  • Bonada NB, Prat N, Resh VH, Statzner B (2006) Development in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523

    Article  PubMed  CAS  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Article  Google Scholar 

  • Boudreau PR, Dickie LM (1992) Biomass spectra of aquatic ecosystems in relation to fisheries yield. Can J Fish Aquat Sci 49:1528–1538

    Article  Google Scholar 

  • Brown JH, Gallooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Campo JL, Prieto MT, Dávila SG (2009) Relationships between fluctuating asymmetry and sexual maturity, social aggressiveness and comb size in chickens. Arch Geflugelk 73:193–200

    Google Scholar 

  • Dickie LM, Kerr SR, Boudreau PR (1987) Size-dependent processes underlying regularities in ecosystem structure. Ecol Monogr 57:233–250

    Article  Google Scholar 

  • Gamble AE, Lloyd R, Aiken J, Johannsson OE, Mills EL (2006) Using zooplankton biomass size spectra to assess ecological change in a well-studied freshwater lake ecosystem: Oneida Lake, New York. Can J Fish Aquat Sci 63:2687–2699

    Article  Google Scholar 

  • Gilabert J (2001) Short-term variability of the planktonic size structure in a Mediterranean coastal lagoon. J Plankton Res 23:219–226

    Article  Google Scholar 

  • Gislason H, Rice J (1998) Modelling the response of size and diversity spectra of fish assemblages to changes in exploitation. ICES J Mar Sci 55:362–370

    Article  Google Scholar 

  • Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw Biol 51:1757–1785

    Article  Google Scholar 

  • Hopton M, Cameron GN, Cramer MJ, Polak M, Uetz GW (2009) Live animal radiography to measure developmental instability in populations of small mammals after a natural disaster. Ecol Indic 9:883–891

    Article  Google Scholar 

  • Huxley JS (1932) Problems of relative growth. Methuen, London

    Google Scholar 

  • Jennings S, Blanchard JL (2004) Fish abundance with no fishing: prediction based on macroecological theory. J Anim Ecol 73:632–642

    Article  Google Scholar 

  • Jennings S, de Oliveira JAA, Warr KJ (2007) Measurement of body size and abundance in tests of macroecological and food web theory. J Anim Ecol 76:72–82

    Article  PubMed  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–332

    CAS  Google Scholar 

  • Kolkwitz R, Marsson M (1902) Grundsätze für die biologische Beurteilung des Wassers nach seiner Flora und Fauna. Mitt. Prüfungsanstalt Wasserversorg Abwasserreinig 1:33–72

    Google Scholar 

  • Leung B, Forbes MR, Houle D (2000) Fluctuating asymmetry as a bioindicator of stress: comparing efficacy of analyses involving multiple traits. Am Nat 155:101–115

    Article  PubMed  Google Scholar 

  • Liess M, Schulz R (1996) Chronic effects of short-term contamination with the pyrethroid insecticide fenvalerate on the caddisfly Limnephilus lunatus. Hydrobiologia 324:99–106

    Article  CAS  Google Scholar 

  • Liess M, Von der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965

    Article  PubMed  CAS  Google Scholar 

  • Liess M, Schäfer RB, Schriever CA (2008) The footprint of pesticide stress in communities-Species traits reveal community effects of toxicants. Sci Total Environ 406:484–490

    Article  PubMed  CAS  Google Scholar 

  • Likens GE (ed) (1985) An ecosystem approach to aquatic ecology – Mirror Lake and its environment. Blackburn Press, Caldwell

    Google Scholar 

  • Manitašević S, Dunderski J, Matić G, Tucić B (2007) Seasonal variation in heat shock proteins Hsp70 und Hsp90 expression in an exposed and a shaded habitat of Iris pumila. Plant Cell Environ 30:1–11

    Article  PubMed  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, De Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopécek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540

    Article  PubMed  CAS  Google Scholar 

  • Mulder C (2006) Driving forces from soil invertebrates to ecosystem functioning: the allometric perspective. Naturwissenschaften 93:467–479

    Article  PubMed  CAS  Google Scholar 

  • Mulder C (2010) Soil fertility controls the size-specific distribution of eukaryotes. Ann NY Acad Sci 1995:E74–E81

    Article  Google Scholar 

  • Mulder C, Elser JJ (2009) Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Glob Change Biol 15:2730–2738

    Article  Google Scholar 

  • Ohle W (1953) Der Vorgang rasanter Seenalterung in Holstein. Naturwissenschaften 40:153–162

    Article  CAS  Google Scholar 

  • Ottaviano O, Scapini F (2010) Can fluctuating asymmetry in Talitrus saltator (Montagu, 1808) populations be used as a bioindicator of stress on sandy beach ecosystems? Oceanologia 52:259–280

    Article  Google Scholar 

  • Parsons PA (1990) Fluctuating asymmetry: an epigenetic measure of stress. Biol Rev 65:131–145

    Article  PubMed  CAS  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge Univ. Press, Cambridge, pp 1–329

    Book  Google Scholar 

  • Pope JG, Knights BJ (1982) Simple models of predation in multi-age multispecies fisheries for considering the estimation of fishing mortality and its effects. In: Mercer MC (ed) Multispecies approaches to fisheries management advice. Canadian special publication of fisheries and aquatic sciences, vol 59. pp 64–69

    Google Scholar 

  • Pope JG, Stokes TK, Murawski SA, Idoine SI (1988) A comparison of fish size-composition in the North Sea and on Georges Bank. In: Wolff W, Soeder CJ, Drepper FR (eds) Ecodynamics, contributions to theoretical ecology. Springer, Berlin, pp 146–152

    Google Scholar 

  • Quiroga E, Quiñones R, Palma M, Sellanes J, Gallardo VA, Gerdes D, Rowe G (2005) Biomass size-spectra of macrobenthic communities in the oxygen minimum zone off Chile. Estuar Coast Shelf Sci 62:217–231

    Article  CAS  Google Scholar 

  • Rice J, Gislason H (1996) Patterns of change in the size spectra of numbers and diversity of the North Sea fish assemblage, as reflected in surveys and models. ICES J Mar Sci 53:1214–1225

    Article  Google Scholar 

  • Schindler DW (1974) Eutrophication and recovery in experimental lakes: implications for lake management. Science 184:897–899

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Kloiber A, Graf W, Lorenz A, Moog O (2006) The AQEM/STAR taxalist – a pan-European macro-invertebrate ecological database and taxa inventory. Hydrobiologia 566:325–342

    Article  Google Scholar 

  • Sellanes J, Quiroga E, Neira C, Gutiérrez D (2007) Changes of macrobenthos composition under different ENSO cycle conditions on the continental shelf off central Chile. Cont Shelf Res 27:1002–1016

    Article  Google Scholar 

  • Sheldon RW, Prakash A, Sutcliffe WH (1972) The size distribution of particles in the ocean. Limnol Oceanogr 17:327–340

    Article  Google Scholar 

  • Shin YJ, Cury P (2004) Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Can J Fish Aquat Sci 61:414–431

    Article  Google Scholar 

  • Shin YJ, Rochet MJ, Jennings S, Field JG, Gislason H (2005) Using size-based indicators to evaluate the ecosystem effects of fishing. ICES J Mar Sci 62:384–396

    Article  Google Scholar 

  • Silvert W, Platt T (1978) Energy flux in the pelagic ecosystem: a time-dependent equation. Limnol Oceanogr 23:813–816

    Article  Google Scholar 

  • Sommer C (1996) Ecotoxicology and developmental stability as an in situ monitor of adaptation. Ambio 25:375–376

    Google Scholar 

  • Sprules WG (2008) Ecological change in Great Lakes communities – a matter of perspective. Can J Fish Aquat Sci 65:1–9

    Article  Google Scholar 

  • Sprules WG, Bowerman JE (1988) Omnivory and food chain length in zooplankton food webs. Ecology 69:418–426

    Article  Google Scholar 

  • Sprules WG, Goyke AP (1994) Size-based structure and production in the pelagia of Lake Ontario and Michigan. Can J Fish Aquat Sci 51:2603–2611

    Article  Google Scholar 

  • Sprules WG, Munawar M (1986) Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can J Fish Aquat Sci 43:1789–1794

    Article  Google Scholar 

  • Sprules WG, Munawar M (1991) Plankton community structure in Lake St. Clair, 1984. Hydrobiologia 219:229–237

    Article  Google Scholar 

  • Sprules WG, Stockwell JD (1995) Size-based biomass and production models in the St Lawrence Great Lakes. ICES J Mar Sci 52:705–710

    Article  Google Scholar 

  • Sprules WG, Casselman JM, Shuter BJ (1983) Size distribution of pelagic particles in lakes. Can J Fish Aquat Sci 40:1761–1769

    Article  Google Scholar 

  • Steinberg C, Brüggemann R (1997) Integrity of limnic ecosystems. In: Let the fish speak: the quality of aquatic ecosystems as an indicator for sustainable water management. EurAqua – 4th Tech Rev:89–101

    Google Scholar 

  • Steinberg CEW, Schäfer H, Beisker W, Brüggemann R (1998a) Deriving restoration goals for acidified lakes from ataxonomic phytoplankton studies. Restor Ecol 6:327–335

    Article  Google Scholar 

  • Steinberg CEW, Schäfer H, Tittel J, Beisker W (1998b) Phytoplankton composition and biomass spectra created by flow cytometry and zooplankton composition in mining lakes of different states of acidification. In: Geller W, Klapper H, Salomons W (eds) Acid mining lakes – acid mining drainage, limnology and reclamation. Springer, Berlin, pp 127–145

    Chapter  Google Scholar 

  • Thompson RM, Hemberg M, Starzomski BM, Shurin JB (2007) Trophic level and trophic tangles: the prevalence of omnivory in real food webs. Ecology 88:612–617

    Article  PubMed  Google Scholar 

  • Tittel J, Zippel B, Geller W, Seeger J (1998) Relationships between plankton community structure and plankton size distribution in lakes of northern Germany. Limnol Oceanogr 43:1119–1132

    Article  Google Scholar 

  • Tucić B, Miljković D (2010) Fluctuating asymmetry of floral organ traits in natural populations of Iris pumila from contrasting ligh habitats. Plant Spec Biol 25:173–184

    Article  Google Scholar 

  • Uetz GW, Roberts JA, Wrinn KM, Polak M, Cameron GN (2009) Impact of a catastrophic natural disturbance on fluctuating asymmetry (FA) in a wolf spider. Ecoscience 16:379–386

    Article  Google Scholar 

  • Van Dongen S, Lens L (2000) Symmetry, size and stress. Trends Ecol Evol 15:330–331

    Article  PubMed  Google Scholar 

  • Van Dongen S, Lens L, Pape E, Volckaert FAM, Raeymaekers JAM (2009) Evolutionary history shapes the association between developmental instability and population-level genetic variation in three-spined sticklebacks. J Evol Biol 22:1695–1707

    Article  PubMed  Google Scholar 

  • Vangestel C, Lens L (2011) Does fluctuating asymmetry constitute a sensitive biomarker of nutritional stress in house sparrows (Passer domesticus)? Ecol Indic 11:389–394

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999a) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999b) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian E. W. Steinberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Steinberg, C.E.W. (2012). Footprints of Stress in Communities. In: Stress Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2072-5_14

Download citation

Publish with us

Policies and ethics