Skip to main content

One Stressor Prepares for the Next One to Come: Cross-Tolerance

  • Chapter
  • First Online:

Abstract

Being stressed by, for instance, a chemical trigger can result in an organism increasing resistance to other chemicals or even to physical and biological triggers. This phenomenon is called cross-tolerance or multiple-stress resistance. Due to a rapidly changing environment, in prokaryotic microorganisms cross-tolerance to environmental stressors seems to be the common case rather than an exception and is based on one key regulatory pathway, the σS regulation (see also Chap. 7), whereas cross-tolerance is somewhat less common in eukaryotic organisms and based on several regulatory mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch MT, Mayer F, Steinbüchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus PD630 to water stress. FEMS Microbiol Ecol 50:75–86

    Article  PubMed  CAS  Google Scholar 

  • Banti V, Loreti E, Novi G, Santaniello A, Alpi A, Perata P (2008) Heat acclimation and cross-tolerance against anoxia in Arabidopsis. Plant Cell Environ 31:1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152:1471–1483

    Article  PubMed  CAS  Google Scholar 

  • Bayley M, Petersen SO, Knigge T, Köhler HR, Holmstrup M (2001) Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. J Insect Physiol 47:1197–2104

    Article  PubMed  CAS  Google Scholar 

  • Bedulina DS, Timofeyev MA, Zimmer M, Zwirnmann E, Menzel R, Steinberg CEW (2010a) Different natural organic matter isolates cause similar stress response patterns in the freshwater amphipod, Gammarus pulex. Environ Sci Pollut Res 17:261–269

    Article  CAS  Google Scholar 

  • Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2009) Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Comp Biochem Physiol A Mol Integr Physiol 152:518–523

    Article  PubMed  Google Scholar 

  • Borash DJ, Pierce VA, Gibbs AG, Mueller LD (2000) Evolution of ammonia and urea tolerance in Drosophila melanogaster: resistance and cross-tolerance. J Insect Physiol 46:763–769

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246

    Article  PubMed  CAS  Google Scholar 

  • Bubliy OA, Loeschcke V (2005) Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J Evol Biol 18:789–803

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Bian X, Jiang S, Chen Z, Jian H, Sun Z (2010) Cold treatment enhances lead resistance in Arabidopsis. Acta Physiol Plant 32:19–25

    Article  CAS  Google Scholar 

  • Chandran K, Love NG (2008) Physiological state, growth mode, and oxidative stress play a role in Cd(II)-mediated inhibition of Nitrosomonas europaea 19718. Appl Environ Microbiol 74:2447–2453

    Article  PubMed  CAS  Google Scholar 

  • Chao YY, Kao CH (2010) Heat shock-induced ascorbic acid accumulation in leaves increases cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Soil 336:39–48

    Article  CAS  Google Scholar 

  • Chidawanyika F, Terblanche JS (2011) Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). J Insect Physiol 57:108–117

    Article  PubMed  CAS  Google Scholar 

  • Clare DA, Rabinowitch HD, Fridovich I (1984) Superoxide dismutase and chilling injury in Chlorella ellipsoidea. Arch Biochem Biophys 231:158–163

    Article  PubMed  CAS  Google Scholar 

  • Elmoor-Loureiro LMA, Santangelo JM, Lopes PM, Bozelli RL (2010) A new report of Moina macrocopa (Straus, 1820) (Cladocera, Anomopoda) in South America. Braz J Biol 70:225–226

    Article  PubMed  CAS  Google Scholar 

  • Eränen JK, Nilsen J, Zverev VE, Kozlov MV (2009) Mountain birch under multiple stressors – heavy metal-resistant populations co-resistant to biotic stress but maladapted to abiotic stress. J Evol Biol 22:840–851

    Article  PubMed  Google Scholar 

  • Georgieva K, Lichtenthaler HK (2006) Photosynthetic response of different pea cultivars to low and high temperature treatments. Photosynthetica 44:569–578

    Article  CAS  Google Scholar 

  • Gołȩbiowska G, Wȩdzony M (2009) Cold-hardening of winter triticale (x Triticosecale Wittm.) results in increased resistance to pink snow mould Microdochium nivale (Fr., Samuels & Hallett) and genotype-dependent chlorophyll fluorescence modulations. Acta Physiol Plant 31:1219–1227

    Article  Google Scholar 

  • Gresikova M, Ferianc P, Toth D, Mistrikova J, Polek B (1997) Heat shock resistance in filial generations of marine Vibrio S14. Biologia 52:717–722

    CAS  Google Scholar 

  • Harshman LG, Hoffmann AA, Clark AG (1999) Selection for starvation resistances in Drosophila melanogaster: physiological correlates, enzyme activities and multiple stress responses. J Evol Biol 12:370–379

    Article  CAS  Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395

    Article  PubMed  CAS  Google Scholar 

  • Hengherr S, Schill RO (2011) Dormant stages in freshwater bryozoans – an adaptation to transcend environmental constraints. J Insect Physiol. doi:10.1016/j.jinsphys.2011.03.018

    Google Scholar 

  • Hengherr S, Heyer AG, Brümmer F, Schill RO (2011a) Trehalose and vitreous states: desiccation tolerance of dormant stages of the crustaceans Triops and Daphnia. Physiol Biochem Zool 84:147–153

    Article  PubMed  CAS  Google Scholar 

  • Hengherr S, Schill RO, Clegg JS (2011b) Mechanisms associated with cellular desiccation tolerance in the animal extremophile Artemia. Physiol Biochem Zool 84:249–257

    Article  PubMed  CAS  Google Scholar 

  • Kaneko G, Yoshinaga T, Yanagawa Y, Ozaki Y, Tsukamoto K, Watabe S (2011) Calorie restriction-induced maternal longevity is transmitted to their daughters in a rotifer. Funct Ecol 25:209–216

    Article  Google Scholar 

  • Koga T, Takumi K (1995a) Comparison of cross-protection against some environmental stresses between cadmium-adapted and heat-adapted cells of Vibrio parahaemolyticus. J Gen Appl Microbiol 41:263–268

    Article  CAS  Google Scholar 

  • Koga T, Takumi K (1995b) Nutrient starvation induces cross protection against heat, osmotic, or H2O2 challenge in Vibrio parahaemolyticus. Microbiol Immunol 39:213–215

    PubMed  CAS  Google Scholar 

  • Koga T, Sakamoto F, Yamoto A, Takumi K (1999) Acid adaptation induces cross-protection against some environmental stresses in Vibrio parahaemolyticus. J Gen Appl Microbiol 45:155–161

    Article  PubMed  CAS  Google Scholar 

  • Koga T, Katagiri T, Hori H, Takumi K (2002) Alkaline adaptation induces cross-protection against some environmental stresses and morphological change in Vibrio parahaemolyticus. Microbiol Res 157:249–255

    Article  PubMed  Google Scholar 

  • Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Article  PubMed  Google Scholar 

  • Lapinski J, Tunnacliffe A (2003) Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett 553:387–390

    Article  PubMed  CAS  Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Article  Google Scholar 

  • Lopes I, Baird DJ, Ribeiro R (2005) Genetically determined resistance to lethal levels of copper by Daphnia longispina: association with sublethal response and multiple/coresistance. Eviron Toxicol Chem 24:1414–1419

    Article  CAS  Google Scholar 

  • Lu C, Brauer MJ, Botstein D (2009) Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol Biol Cell 20:891–903

    Article  PubMed  CAS  Google Scholar 

  • MacMillan HA, Walsh JP, Sinclair BJ (2009) The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci 16:263–276

    Article  Google Scholar 

  • Malan C, Greyling MM, Gressel J (1990) Correlation between CuZn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69:157–166

    Article  CAS  Google Scholar 

  • McGee B, Schill RO, Tunnacliffe A (2004) Hydrophilic proteins in invertebrate anhydrobiosis. Integr Comp Biol 44:679–1679

    Google Scholar 

  • Meinelt T, Schreckenbach K, Knopf K, Wienke A, Stüber A, Steinberg CEW (2004) Humic substances affect physiological condition and sex ratio of swordtail (Xiphophorus helleri Heckel). Aquat Sci 66:239–245

    Article  Google Scholar 

  • Miller DL, Roth MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci USA 104:20618–20622

    Article  PubMed  CAS  Google Scholar 

  • Plazek A, Zur I (2003) Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Sci 164:1019–1028

    Article  CAS  Google Scholar 

  • Płazek A, Rapacz M, Hura K (2004) Relationship between quantum efficiency of PSII and cold-induced plant resistance to fungal pathogens. Acta Physiol Plant 26:141–148

    Article  Google Scholar 

  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metal defend plants against biotic stress? Trends Plant Sci 11:288–295

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitch HD, Fridovich I (1985) Growth of Chlorella sorokiniana in the presence of sulfite elevates cell content of superoxide dismutase and imparts resistance towards paraquat. Planta 164:524–528

    Article  CAS  Google Scholar 

  • Remorini S, Melgar JC, Guidi L, Degl’Innocenti E, Castelli S, Traversi ML, Massai R, Tattini M (2009) Interaction effects of root-zone salinity and solar irradiance on the physiology and biochemistry of Olea europaea. Environ Exp Bot 65:210–219

    Article  CAS  Google Scholar 

  • Reuner A, Hengherr S, Mali B, Förster F, Arndt D, Reinhardt R, Dandekar T, Frohme M, Bümmer F, Schill RO (2010) Stress response in tardigrades: differential gene expression of molecular chaperones. Cell Stress Chaperones 15:423–4340

    Article  PubMed  CAS  Google Scholar 

  • Rizzo AM, Negroni M, Altiero T, Montorfano G, Corsetto P, Berselli P, Berra B, Guidetti R, Rebecchi L (2010) Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi. Comp Biochem Physiol B Biochem Mol Biol 156:115–121

    Article  PubMed  Google Scholar 

  • Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY (2010) Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis 33:789–801

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert J, Pasmans F, Tobback E, Duchateau L, Decostere A, Haesebrouck F, Sorgeloos P, Bossier P (2010) Heat shock proteins protect platyfish (Xiphophorus maculatus) from Yersinia ruckeri induced mortality. Fish Shellfish Immunol 28:228–231

    Article  PubMed  CAS  Google Scholar 

  • Saltveit ME (2002) Heat shocks increases the chilling tolerance of rice (Oryza sativa) seedling radicals. J Agric Food Chem 50:3232–3235

    Article  PubMed  CAS  Google Scholar 

  • Santangelo JM, Bozelli RL, Rocha AD, Esteves FD (2008) Effects of slight salinity increases on Moina micrura (Cladocera) populations: field and laboratory observations. Mar Freshw Res 59:808–816

    Article  CAS  Google Scholar 

  • Schill RO, Steinbrück G, Köhler HR (2004) Stress gene (hsp 70) sequences and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobiotic stages. J Exp Biol 207:1607–1613

    Article  PubMed  CAS  Google Scholar 

  • Schokraie E, Hotz-Wagenblatt A, Warnken U, Mali B, Frohme M, Förster F, Dandekar T, Hengherr S, Schill RO, Schnölzer M (2010) Proteomic analysis of tardigrades: towards a better understanding of molecular mechanisms by anhydrobiotic organisms. PLoS One 5:e9502

    Article  PubMed  Google Scholar 

  • Sharma YK, León J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA 93:5099–5104

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Response to carbon-starvation in Pseudomonas aeruginosa strain IE-6 S+: analysis of general cross protection, production of some nematocidal compounds in vitro, and the biological control of Meloidogyne javanica in tomato. World J Micriobiol Biotechnol 19:917–924

    Article  CAS  Google Scholar 

  • Sinclair BJ, Gibbs AG, Roberts SP (2007) Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Mol Biol 16:435–443

    Article  PubMed  CAS  Google Scholar 

  • Sørensen JG, Loeschcke V, Kristensen TN (2009) Lessons from the use of genetically modified Drosophila melanogaster in ecological studies: Hsf mutant lines show highly trait-specific performance in field and laboratory thermal assays. Funct Ecol 23:240–247

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Steinberg CEW, Saul N, Pietsch K, Meinelt T, Rienau S, Menzel R (2007) Dissolved humic substances facilitate fish life in extreme aquatic environments and have the potential to extend lifespan of Caenorhabditis elegans. Ann Environ Sci 1:81–90

    CAS  Google Scholar 

  • Steinberg CEW, Ouerghemmi N, Herrmann S, Bouchnak R, Timofeyev MA, Menzel R (2010a) Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. Hydrobiologia 652:223–236

    Article  CAS  Google Scholar 

  • Streb P, Aubert S, Gout E, Feierabend J, Bligny R (2008) Cross tolerance to heavy-metal and cold-induce photoinhibition in leaves of Pisum sativum acclimated to low temperature. Physiol Mol Biol Plants 14:185–193

    Article  CAS  Google Scholar 

  • Suhett AL, Steinberg CEW, Santangelo JM, Bozelli RL, Farjalla VF (2011) Natural dissolved humic substances increase the lifespan and promote transgenerational resistance to salt stress in the cladoceran Moina macrocopa. Environ Sci Pollut Res Int. doi:10.1007/s11356-011-0455-y

    Google Scholar 

  • Sung YY, Pineda C, MacRae TH, Sorgeloos P, Bossier P (2008) Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbelli. Cell Stress Chaperones 13:59–66

    Article  PubMed  CAS  Google Scholar 

  • Teklemariam T, Blake TJ (2003) Effects of UVB preconditioning on heat tolerance of cucumber (Cucumis sativus L.). Environ Exp Bot 50:169–182

    Article  CAS  Google Scholar 

  • Timofeyev MA, Wiegand C, Burnison BK, Shatilina ZM, Pflugmacher S, Steinberg CEW (2004) Impact of natural organic matter (NOM) on freshwater amphipods. Sci Total Environ 319:115–121

    Article  PubMed  CAS  Google Scholar 

  • Todgham AE, Schulte PM, Iwama GK (2005) Cross-tolerance in the tidepool sculpin: the role of heat shock proteins. Physiol Biochem Zool 78:133–144

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  PubMed  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    Article  PubMed  CAS  Google Scholar 

  • Wełnicz W, Grohme MA, Kaczmarek Ł, Schill RO, Frohme M (2011) Anhydrobiosis in tardigrades – the last decade. J Insect Physiol. doi:10.1016/j.jinsphys.2011.03.019

    Google Scholar 

  • Yalpani N, Enyedi AJ, León J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicyclic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian E. W. Steinberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Steinberg, C.E.W. (2012). One Stressor Prepares for the Next One to Come: Cross-Tolerance. In: Stress Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2072-5_12

Download citation

Publish with us

Policies and ethics