Skip to main content

Subependymal Giant Cell Astrocytoma: Role of mTOR Pathway and Its Inhibitors

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 5

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 5))

  • 1720 Accesses

Abstract

Subependymal giant cell astrocytoma is a distinct brain tumor growing near the foramen of Monro. Although histologically benign, these tumors may produce hydrocephalus and are associated with significant morbidity and mortality. Until recently, the only recommended treatment for these tumors was surgical resection. Subependymal giant cell astrocytoma is almost exclusively associated with Tuberous Sclerosis Complex. Tuberous Sclerosis Complex is a relatively frequent neurocutaneous disease, caused by the mutation in either of two genes: TSC1 or TSC2. Both genes act as tumor suppressors, and their products were shown to inhibit mTOR pathway. Recently, the recognition of the role of mTOR pathway in the pathogenesis of Tuberous Sclerosis Complex and subependymal giant cell astrocytoma led to clinical trials of mTOR inhibitors. Everolimus was shown to reduce the size of subependymal giant cell astrocytoma and is currently approved by FDA to treat patients with SEGA associated with TSC, who cannot be treated with surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chan JA, Zhang H, Roberts PS, Jozwiak S, Grajkowska W, Lewin-Kowalik J, Kotulska K, Kwiatkowski DJ (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63:1236–1242

    PubMed  CAS  Google Scholar 

  • Choi YJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, He X (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22(18):2485–2495

    Article  PubMed  CAS  Google Scholar 

  • Crino PB (2008) Rapamycin and tuberous sclerosis complex: from Easter Island to epilepsy. Ann Neurol 63(4):415–417

    Article  PubMed  Google Scholar 

  • Curatolo P, Bombardieri R, Jozwiak S (2008) Tuberous sclerosis. Lancet 372:657–668

    Article  PubMed  CAS  Google Scholar 

  • Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80

    Article  PubMed  CAS  Google Scholar 

  • de Ribaupierre S, Dorfmüller G, Bulteau C, Fohlen M, Pinard JM, Chiron C, Delalande O (2007) Subependymal giant-cell astrocytomas in pediatric tuberous sclerosis disease: when should we operate? Neurosurgery 60(1):83–89

    PubMed  Google Scholar 

  • Fingar DC, Salama S, Tsou C, Harlow E, Blenis J (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472–1487

    Article  PubMed  CAS  Google Scholar 

  • Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G, Dinopoulos A, Thomas G, Crone KR (2006) Rapamycine causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59:490–498

    Article  PubMed  CAS  Google Scholar 

  • Freilinger A, Rosner M, Krupitza G, Nishino M, Lubec G, Korsmeyer SJ, Hengstschlãger M (2006) Tuberin activates the proapoptotic molecule BAD. Oncogene 25(49):6467–6479

    Article  PubMed  CAS  Google Scholar 

  • Gibbons JJ, Abraham RT, Yu K (2009) Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol 36(Suppl 3):3–17

    Article  Google Scholar 

  • Grajkowska W, Kotulska K, Jurkiewicz E, Matyja E (2010) Brain lesions in tuberous sclerosis complex. Review. Folia Neuropathol 48(3):139–149

    PubMed  Google Scholar 

  • Guba M, Yezhelyev M, Eichhorn ME, Schmid G, Ischenko I, Papyan A, Graeb C, Seeliger H, Geissler EK, Jauch KW, Bruns CJ (2005) Rapamycin induces tumor-specific thrombosis via tissue factor in the presence of VEGF. Blood 105(11):4463–4469

    Article  PubMed  CAS  Google Scholar 

  • Henske EP, Scheithauer BW, Short MP, Wollmann R, Nahmias J, Hornigold N, van Slegtenhorst M, Welsh CT, Kwiatkowski DJ (1996) Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet 59(2):400–406

    PubMed  CAS  Google Scholar 

  • Henske EP, Wessner LL, Golden J, Scheithauer BW, Vortmeyer AO, Zhuang Z, Klein-Szanto AJ, Kwiatkowski DJ, Yeung RS (1997) Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol 151(6):1639–1647

    PubMed  CAS  Google Scholar 

  • Ichikawa T, Wakisaka A, Daido S, Takao S, Tamiya T, Date I, Koizumi S, Niida Y (2005) A case of solitary subependymal giant cell astrocytoma. Two somatic hits of TSC2 in the tumor, without evidence of somatic mosaicism. J Mol Diagn 7(4):544–549

    Article  PubMed  CAS  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan K (2002) Tsc2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling. Nat Cell Biol 4:648–657

    Article  PubMed  CAS  Google Scholar 

  • Johnson MW, Miyata H, Vinters HV (2002) Ezrin and moesin expression within the developing human cerebrum and tuberous sclerosis-associated cortical tubers. Acta Neuropathol 104(2):188–96

    Article  PubMed  CAS  Google Scholar 

  • Jozwiak J, Grajkowska W, Kotulska K, Jozwiak S, Zalewski W, Zajaczkowska A, Roszkowski M, Slupianek A, Wlodarski P (2007) Brain tumor formation in tuberous sclerosis depends on Erk activation. Neuromol Med 9(2):117–127

    Article  CAS  Google Scholar 

  • Jozwiak S, Schwartz RA, Janniger CK, Bielicka-Cymerman J (2000) Usefulness of diagnostic criteria of tuberous sclerosis complex in pediatric patients. J Child Neurol 15:652–659

    Article  PubMed  CAS  Google Scholar 

  • Jóźwiak S, Kwiatkowski D, Kotulska K, Larysz-Brysz M, Lewin-Kowalik J, Grajkowska W, Roszkowski M (2004) Tuberin and hamartin expression is reduced in the majority of subependymal giant cell astrocytomas in tuberous sclerosis complex consistent with a two-hit model of pathogenesis. J Child Neurol 19(2):102–106

    PubMed  Google Scholar 

  • Jóźwiak S, Perek-Polnik M, Kotulska K, Jurkiewicz E, Roszkowski M, Perek D (2011) Effective everolimus treatment of inoperable, life-threatening SEGA in a patient with tuberous sclerosis. Abstracts for 9th European Pediatric Neurology Society Congress, Cavtat, Croatia, 2011.

    Google Scholar 

  • Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Wang KC, Cho BK, Jung HW, Lee YJ, Chung YS, Lee JY, Park SH, Kim YM, Choe G, Chi JG (2001) Biological behavior and tumorigenesis of subependymal giant cell astrocytomas. J Neurooncol 52(3):217–225

    Article  PubMed  CAS  Google Scholar 

  • Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363(19):1801–1811

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowski DJ (2003) Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther 2(5):471–3476

    PubMed  CAS  Google Scholar 

  • Kwiatkowski DJ, Manning BD (2005) Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 14:251–258

    Article  Google Scholar 

  • Lam C, Bouffet E, Tabori U, Mabbott D, Taylor M, Bartels U (2009) Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatr Blood Cancer 54(3):476–479

    Article  Google Scholar 

  • Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, Littlewood-Evans A, Maira SM, Martiny-Baron G, Schnell CR, Sini P, O’Reilly T (2009) mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res 15(5):1612–1622

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Woodrum L, Nobil A, Rauktys A, Messina M, Dabora S (2009) Rapamycin weekly maintenance dosing and the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models. BMC Pharmacol 9:8–23

    Article  PubMed  Google Scholar 

  • Lin Y, Henderson P, Pettersson S, Satsangi J, Hupp T, Stevens C (2011) Tuberous sclerosis-2 (TSC2) regulates the stability of death-associated protein kinase-1 (DAPK) through a lysosome-dependent degradation pathway.. FEBS J 278(2):354–370

    Article  PubMed  CAS  Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Boenefant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in growth control. Mol Cell 10:457–468

    Article  PubMed  CAS  Google Scholar 

  • Mi R, Ma J, Zhang D, Li L, Zhang H (2009) Efficacy of combined inhibition of mTOR and ERK/MAPK pathways in treating a tuberous sclerosis complex cell model. J Genet Genomics 36:355–361

    Article  PubMed  CAS  Google Scholar 

  • Pollizzi K, Malinowska-Kolodziej I, Stumm M, Lane H, Kwiatkowski D (2009) Equivalent benefit of mTORC1 blockade and combined PI3K-mTOR blockade in a mouse model of tuberous sclerosis. Mol Cancer 15(8):38

    Article  Google Scholar 

  • Rosner M, Hengstschlaeger M (2008) Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rector and sin1. Hum Mol Genet 17(19):2934–2948

    Article  PubMed  CAS  Google Scholar 

  • Rüegg S, Baybis M, Juul H, Dichter M, Crino PB (2007) Effects of rapamycin on gene expression, morphology, and electrophysiological properties of rat hippocampal neurons. Epilepsy Res 77(2–3):85–92

    Google Scholar 

  • Shepherd CW, Gomez MR, Lie JT, Crowson CS (1991) Causes of death in patients with tuberous sclerosis. Mayo Clin Proc 66(8):792–796

    PubMed  CAS  Google Scholar 

  • Torres OA, Roach ES, Delgado MR, Sparagana SP, Sheffield E, Swift D, Bruce D (1998) Early diagnosis of subependymal giant cell astrocytoma in patients with tuberous sclerosis. J Child Neurol 13(4):173–177

    Article  PubMed  CAS  Google Scholar 

  • Tyburczy ME, Kotulska K, Pokarowski P, Mieczkowski J, Kucharska J, Grajkowska W, Roszkowski M, Jozwiak S, Kaminska B (2010) Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 176(4):1878–1890

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5:578–581

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Kotulska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kotulska, K., Jóźwiak, S. (2012). Subependymal Giant Cell Astrocytoma: Role of mTOR Pathway and Its Inhibitors. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 5. Tumors of the Central Nervous System, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2019-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2019-0_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2018-3

  • Online ISBN: 978-94-007-2019-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics