Skip to main content

Time-Resolved Laser Induced Fluorescence Spectroscopy (TRLIFS): A Tool for Intra-operative Diagnosis of Brain Tumors and Maximizing Extent of Surgical Resection

  • Chapter
  • First Online:
  • 1777 Accesses

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 5))

Abstract

Time-resolved laser induced fluorescence spectroscopy (TR-LIFS) can be used to differentiate various tissue types in vivo, based on the intrinsic fluorescent time-decay properties of these tissues. We have developed TR-LIFS as an intra-operative tool for the delineation of gliomas from normal brain, and established an algorithm for real-time differentiation of normal cortex, normal white matter, low grade gliomas, and high grade glioma. Forty two patients who were undergoing glioma (WHO grade I-IV) surgery were enrolled in the study. A TR-LIFS prototype apparatus (gated detection, fast digitizer) was used to induce in vivo fluorescence using a pulsed N2 laser (337 nm excitation, 0.7 ns pulse width) and to record the time-resolved spectrum (360–550 nm range, 10 nm interval). The sites of TR-LIFS measurement were biopsied, and histology confirmed by conventional pathology (H&E staining). Comparison of the parameters derived from the TR-LIFS data, including intensity values and time-resolved intensity decay features (average fluorescence lifetime and Laguerre coefficients values), were used for to define the most common TR-LIFS “signature” for each tissue type. Seventy one biopsy samples of tumor and normal brain were analyzed. A linear discriminant algorithm classified low-grade gliomas with 100% sensitivity and 98% specificity. High-grade glioma demonstrated a high degree of heterogeneity reducing the discrimination accuracy of these tumors to 47% sensitivity and 94% specificity. These results indicate the potential of TR-LIFS for real-time, non-invasive intra-operative diagnosis of brain tumors. Validation studies are underway. If these validation studies confirm the findings, TR-LIFS is likely to become a rapid, safe, and easy to use means to maximize extent of tumor resection while minimizing damage to surrounding normal tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson-Engels S, Johansson J, Stenram U, Svanberg K, Svanberg S (1990) Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques. J Photochem Photobiol B 4:363–369

    Article  PubMed  CAS  Google Scholar 

  • Baron AE (1991) Misclassification among methods used for multiple group discrimination–the effects of distributional properties. Stat Med 10:757–766

    Article  PubMed  CAS  Google Scholar 

  • Bello AL (1992) Misclassification among methods used for multiple group discrimination–the effects of distributional properties. Stat Med 11:1623–1624

    Article  PubMed  CAS  Google Scholar 

  • Berger MS (1994) Malignant astrocytomas: surgical aspects. Semin Oncol 21:172–185

    PubMed  CAS  Google Scholar 

  • Beychok S, Tyuma I, Benesch RE, Benesch R (1967) Optically active absorption bands of hemoglobin and its subunits. J Biol Chem 242:2460–2462

    PubMed  CAS  Google Scholar 

  • Bottiroli G, Croce AC, Locatelli D, Marchesini R, Pignoli E, Tomatis S, Cuzzoni C, Di Palma S, Dalfante M, Spinelli P (1995) Natural fluorescence of normal and neoplastic human colon: a comprehensive “ex vivo” study. Lasers Surg Med 16:48–60

    Article  PubMed  CAS  Google Scholar 

  • Bottiroli G, Croce AC, Locatelli D, Nano R, Giombelli E, Messina A, Benericetti E (1998) Brain tissue autofluorescence: an aid for intraoperative delineation of tumor resection margins. Cancer Detect Prev 22:330–339

    Article  PubMed  CAS  Google Scholar 

  • Brandes AA, Tosoni A, Franceschi E, Reni M, Gatta G, Vecht C (2008) Glioblastoma in adults. Crit Rev Oncol Hematol 67:139–152

    Article  PubMed  Google Scholar 

  • Butte PV, Pikul BK, Hever A, Yong WH, Black KL, Marcu L (2005) Diagnosis of meningioma by time-resolved fluorescence spectroscopy. J Biomed Opt 10:064026

    Article  PubMed  Google Scholar 

  • Butte PV, Fang Q, Jo JA, Yong WH, Pikul BK, Black KL, Marcu L (2010) Intra-operative delineation of primary brain tumors using time-resolved fluorescence spectroscopy. J Biomed Opt:15(2)

    Google Scholar 

  • Byar DP, Strike TA, Walker MD, Green SB (1983) Prognostic factors for malignant glioma. Oncology of the nervous system, 379–395. Boston: Marinus Nijhoff

    Google Scholar 

  • Chung YG, Schwartz JA, Gardner CM, Sawaya RE, Jacques SL (1997) Diagnostic potential of laser-induced autofluorescence emission in brain tissue. J Korean Med Sci 12:135–142

    PubMed  CAS  Google Scholar 

  • Croce AC, Fiorani S, Locatelli D, Nano R, Ceroni M, Tancioni F, Giombelli E, Benericetti E, Bottiroli G (2003) Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins. Photochem Photobiol 77:309–318

    Article  PubMed  CAS  Google Scholar 

  • Cubeddu R, Pifferi A, Taroni P, Valentini G, Canti G (1995) Tumor detection in mice by measurement of fluorescence decay time matrices. Opt Lett 20:2553

    Article  PubMed  CAS  Google Scholar 

  • Ducray F, Dutertre G, Ricard D, Gontier E, Idbaih A, Massard C (2010) Advances in adults’ gliomas biology, imaging and treatment. Bull Cancer 97:17–36

    PubMed  CAS  Google Scholar 

  • Elson D, Requejo-Isidro J, Munro I, Reavell F, Siegel J, Suhling K, Tadrous P, Benninger R, Lanigan P, McGinty J, Talbot C, Treanor B, Webb S, Sandison A, Wallace A, Davis D, Lever J, Neil M, Phillips D, Stamp G, French P (2004) Time-domain fluorescence lifetime imaging applied to biological tissue. Photochem Photobiol Sci 3:795–801

    Article  PubMed  CAS  Google Scholar 

  • Fang Q, Papaioannou T, Jo JA, Vaitha K, Marcu L (2004) Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics. Rev Sci Instrum 75:151–162

    Article  CAS  Google Scholar 

  • Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, Jeuken JW, Wesseling P, Reifenberger G, von Deimling A (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474

    Article  PubMed  Google Scholar 

  • Jo JA, Fang Q, Papaioannou T, Marcu L (2004a) Fast model-free deconvolution of fluorescence decay for analysis of biological systems. J Biomed Opt 9:743–752

    Article  PubMed  CAS  Google Scholar 

  • Jo JA, Fang Q, Papaioannou T, Qiao JH, Fishbein MC, Dorafshar A, Reil T, Baker D, Freischlag J, Marcu L (2004b) Novel methods of time-resolved fluorescence data analysis for in-vivo tissue characterization: application to atherosclerosis. Conf Proc IEEE Eng Med Biol Soc 2:1372–1375

    PubMed  CAS  Google Scholar 

  • Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12:535–540

    Article  PubMed  CAS  Google Scholar 

  • Lin WC, Toms SA, Johnson M, Jansen ED, Mahadevan-Jansen A (2001) In vivo brain tumor demarcation using optical spectroscopy. Photochem Photobiol 73:396–402

    Article  PubMed  CAS  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  • Marcu L, Fishbein MC, Maarek JM, Grundfest WS (2001) Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy. Arterioscler Thromb Vasc Biol 21:1244–1250

    Article  PubMed  CAS  Google Scholar 

  • Marcu L, Jo JA, Butte PV, Yong WH, Pikul BK, Black KL, Thompson RC (2004) Fluorescence lifetime spectroscopy of glioblastoma multiforme. Photochem Photobiol 80:98–103

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou T, Preyer N, Fang Q, Carnohan M, Ross R, Brightwell A, Cottone G, Jones L, Marcu L (2004) Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm. Appl Opt 43:2846–2860

    Article  PubMed  Google Scholar 

  • Poon WS, Schomacker KT, Deutsch TF, Martuza RL (1992) Laser-induced fluorescence: experimental intraoperative delineation of tumor resection margins. J Neurosurg 76:679–686

    Article  PubMed  CAS  Google Scholar 

  • Robins HI, Lassman AB, Khuntia D (2009) Therapeutic advances in malignant glioma: current status and future prospects. Neuroimag Clin N Am 19:647–656

    Article  Google Scholar 

  • Rosato N, Mei G, Finazzi-Agro A, Tancini B, Borri-Voltattorni C (1989) Time-resolved extrinsic fluorescence of aromatic-L-amino-acid decarboxylase. Biochim Biophys Acta 996:195–198

    Article  PubMed  CAS  Google Scholar 

  • Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764, discussion 264–756

    Article  PubMed  Google Scholar 

  • Siegel J, Elson DS, Webb SE, Lee KC, Vlandas A, Gambaruto GL, Leveque-Fort S, Lever MJ, Tadrous PJ, Stamp GW, Wallace AL, Sandison A, Watson TF, Alvarez F, French PM (2003) Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles. Appl Opt 42:2995–3004

    Article  PubMed  Google Scholar 

  • Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, Tihan T, Vandenberg S, McDermott MW, Berger MS (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26:1338–1345

    Article  PubMed  Google Scholar 

  • Sud D, Zhong W, Beer DG, Mycek MA (2006) Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models. Opt Express 14:4412–4426

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Liu R, Elson DS, Hollars CW, Jo JA, Park J, Marcu L (2008) Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis. Opt Lett 33:630–632

    Article  PubMed  Google Scholar 

  • Sun Y, Phipps J, Elson DS, Stoy H, Tinling S, Meier J, Poirier B, Chuang FS, Farwell DG, Marcu L (2009) Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt Lett 34:2081–2083

    Article  PubMed  CAS  Google Scholar 

  • Svensson T, Andersson-Engels S, Einarsdottir M, Svanberg K (2007) In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy. J Biomed Opt 12:014022

    Article  PubMed  Google Scholar 

  • Umesh S, Tandon A, Santosh V, Anandh B, Sampath S, Chandramouli BA, Sastry Kolluri VR (2009) Clinical and immunohistochemical prognostic factors in adult glioblastoma patients. Clin Neuropathol 28:362–372

    PubMed  CAS  Google Scholar 

  • Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632

    PubMed  CAS  Google Scholar 

  • Yan H, Bigner DD, Velculescu V, Parsons DW (2009) Mutant metabolic enzymes are at the origin of gliomas. Cancer Res 69:9157–9159

    Article  PubMed  CAS  Google Scholar 

  • Yong WH, Butte PV, Pikul BK, Jo JA, Fang Q, Papaioannou T, Black K, Marcu L (2006) Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy. Front Biosci 11:1255–1263

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Butte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Butte, P., Mamelak, A.N. (2012). Time-Resolved Laser Induced Fluorescence Spectroscopy (TRLIFS): A Tool for Intra-operative Diagnosis of Brain Tumors and Maximizing Extent of Surgical Resection. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 5. Tumors of the Central Nervous System, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2019-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2019-0_19

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2018-3

  • Online ISBN: 978-94-007-2019-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics