Skip to main content

Diffuse Low-Grade Astrocytomas: P53-Mediated Inhibition of Angiogenesis

  • Chapter
  • First Online:
  • 1682 Accesses

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 5))

Abstract

Angiogenesis is playing a crucial role in the growth and progression of astrocytomas. P53 a tumor suppressor gene located on chromosome 17p has been implicated to the regulation of cell death, particularly apoptosis, proliferation and also angiogenesis. In this in vitro study we evaluated the association of p53 gene status (wild-type or mutated) with micro vascular density in a set of astrocytomas. Immunohistochemistry for CD31, a surface marker expressed on endothelial cells, was performed on 23 diffuse astrocytomas (WHO Grade II). Mutation status of the p53 gene was identified by PCR amplification with consequent sequencing of genomic DNA extracted from each tumor tissue. Intratumoural or peritumoural microvascular hot spots were assessed and images taken at a 200× fold magnification. Microvessel count was performed with a modern automatic image analyses algorithm by using these images. P53 mutation occurred in 11 out of 23 (47%) astrocytomas. In p53 mutated gliomas the micro-vascular density and the absolute vessel number was significantly higher compared to p53 wild-type gliomas, thereby supporting the hypothesis of a p53-mediated regulation on angiogenesis in diffuse low-grade astrocytomas. To analyze a possible molecular mechanisms between these two factors, LN229, a glioma cell line, harbouring a p53 mutation, was transfected with p53 wild-type and empty vector, as a negative control. A protein array analysis provided evidence that Thrombospondin-1, Coagulation factor III, Serpin E1 and MMP-9 are potential p53 targets and important key players in regulating angiogenesis in gliomas. Our results support the hypotheses that p53 regulates angiogenesis in low grade astrocytomas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdulrauf SI, Edvardsen K, Ho KL, Yang XY, Rock JP, Rosenblum ML (1998) Vascular endothelial growth factor expression and vascular density as prognostic markers of survival in patients with low-grade astrocytoma. J Neurosurg 88(3):513–520

    Article  PubMed  CAS  Google Scholar 

  • Anker L, Ohgaki H, Ludeke BI, Herrmann HD, Kleihues P, Westphal M (1993) p53 protein accumulation and gene mutations in human glioma cell lines. Int J Cancer 55(6):982–987

    Article  PubMed  CAS  Google Scholar 

  • Belting M, Ahamed J, Ruf W (2005) Signaling of the tissue factor coagulation pathway in angiogenesis and cancer. Arterioscler Thromb Vasc Biol 25(8):1545–1550

    Article  PubMed  CAS  Google Scholar 

  • Berger B, Capper D, Lemke D, Pfenning PN, Platten M, Weller M, von Deimling A, Wick W, Weiler M (2010) Defective p53 antiangiogenic signaling in glioblastoma. Neuro Oncol 12(9):894–907

    Article  PubMed  CAS  Google Scholar 

  • Boehme KA, Blattner C (2009) Regulation of p53–insights into a complex process. Crit Rev Biochem Mol Biol 44(6):367–392

    Article  PubMed  CAS  Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994a) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265(5178):1582–1584

    Article  PubMed  CAS  Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994b) The p53 tumor suppressor gene inhibits angiogenesis by stimulating the production of thrombospondin. Cold Spring Harb Symp Quant Biol 59:483–489

    PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr., Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221

    Article  PubMed  CAS  Google Scholar 

  • el-Deiry, W.S. (1998) Regulation of p53 downstream genes. Semin Cancer Biol 8(5):345–357

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–6

    Article  PubMed  CAS  Google Scholar 

  • Giuriato S, Ryeom S, Fan AC, Bachireddy P, Lynch RC, Rioth MJ, van Riggelen J, Kopelman AM, Passegue E, Tang F, Folkman J, Felsher DW (2006) Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc Natl Acad Sci USA 103(44):16266–16271

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54(18):4855–4878

    PubMed  CAS  Google Scholar 

  • Hainaut P, Hollstein M (2000) p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77:81–137

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis – the p53 network. J Cell Sci 116(Pt 20):4077–4085

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53

    Article  PubMed  CAS  Google Scholar 

  • Hsu SC, Volpert OV, Steck PA, Mikkelsen T, Polverini PJ, Rao S, Chou P, Bouck NP (1996) Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res 56(24):5684–5691

    PubMed  CAS  Google Scholar 

  • Iddings DM, Koda EA, Grewal SS, Parker R, Saha S, Bilchik A (2007) Association of angiogenesis markers with lymph node metastasis in early colorectal cancer. Arch Surg 142(8):738–744. discussion 744–735

    Article  PubMed  CAS  Google Scholar 

  • Kazuno M, Tokunaga T, Oshika Y, Tanaka Y, Tsugane R, Kijima H, Yamazaki H, Ueyama Y, Nakamura M (1999) Thrombospondin-2 (TSP2) expression is inversely correlated with vascularity in glioma. Eur J Cancer 35(3):502–506

    Article  PubMed  CAS  Google Scholar 

  • Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, Sabel M, Steinbach JP, Heese O, Reifenberger G, Weller M, Schackert G (2007) Long-term survival with glioblastoma multiforme. Brain 130(Pt 10): 2596–2606

    Article  PubMed  Google Scholar 

  • Kunz C, Pebler S, Otte J, von der Ahe D (1995) Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res 23(18):3710–3717

    Article  PubMed  CAS  Google Scholar 

  • Kupryjanczyk J, Thor AD, Beauchamp R, Merritt V, Edgerton SM, Bell DA, Yandell DW (1993) p53 gene mutations and protein accumulation in human ovarian cancer. Proc Natl Acad Sci USA 90(11):4961–4965

    Article  PubMed  CAS  Google Scholar 

  • Lakka SS, Gondi CS, Yanamandra N, Dinh DH, Olivero WC, Gujrati M, Rao JS (2003) Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth. Cancer Res 63(10):2454–2461

    PubMed  CAS  Google Scholar 

  • Leon SP, Folkerth RD, Black PM (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77(2):362–372

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhan M, Hannay JA, Das P, Bolshakov SV, Kotilingam D, Yu D, Lazar AF, Pollock RE, Lev D (2006) Wild-type p53 inhibits nuclear factor-kappaB-induced matrix metalloproteinase-9 promoter activation: implications for soft tissue sarcoma growth and metastasis. Mol Cancer Res 4(11):803–810

    Article  PubMed  CAS  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  Google Scholar 

  • Lutzker SG, Levine AJ (1996) A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nat Med 2(7): 804–810

    Article  PubMed  CAS  Google Scholar 

  • Nor JE, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ (2000) Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 37(3):209–218

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Di Patre PL, Burkhard C, Horstmann S, Jourde B, Fahey M, Schuler D, Probst-Hensch NM, Yasargil MG, Yonekawa Y, Lutolf UM, Kleihues P, Ohgaki H (2004) Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol 108(1):49–56

    Article  PubMed  Google Scholar 

  • Reifenberger J, Ring GU, Gies U, Cobbers L, Oberstrass J, An HX, Niederacher D, Wechsler W, Reifenberger G (1996) Analysis of p53 mutation and epidermal growth factor receptor amplification in recurrent gliomas with malignant progression. J Neuropathol Exp Neurol 55(7):822–831

    Article  PubMed  CAS  Google Scholar 

  • Schiffer D, Chio A, Giordana MT, Mauro A, Migheli A, Vigliani MC (1989) The vascular response to tumor infiltration in malignant gliomas. Morphometric and reconstruction study. Acta Neuropathol 77(4):369–378

    Article  PubMed  CAS  Google Scholar 

  • Stander M, Peraud A, Leroch B, Kreth FW (2004) Prognostic impact of TP53 mutation status for adult patients with supratentorial World Health Organization Grade II astrocytoma or oligoastrocytoma: a long-term analysis. Cancer 101(5):1028–1035. doi:10.1002/cncr.20432

    Article  PubMed  Google Scholar 

  • Takeuchi H, Hashimoto N, Kitai R, Kubota T, Kikuta KI (2009) Proliferation of vascular smooth muscle cells in glioblastoma multiforme. J Neurosurg 113(2):218–224

    Google Scholar 

  • Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y (2000) A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404(6773):42–49

    Article  PubMed  CAS  Google Scholar 

  • Teodoro JG, Parker AE, Zhu X, Green MR (2006) p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313(5789):968–971

    Article  PubMed  CAS  Google Scholar 

  • Teodoro JG, Evans SK, Green MR (2007) Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med 85(11):1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Sato K, Biernat W, Tachibana O, von Ammon K, Ogata N, Yonekawa Y, Kleihues P, Ohgaki H (1997) Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 3(4):523–530

    PubMed  CAS  Google Scholar 

  • Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84(24):1875–1887

    Article  PubMed  CAS  Google Scholar 

  • Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ (1995) Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol 54(3):304–310

    Article  PubMed  CAS  Google Scholar 

  • Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 32(3):253–265

    Article  PubMed  CAS  Google Scholar 

  • Wesseling P, van der Laak JA, Link M, Teepen HL, Ruiter DJ (1998) Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol 29(4):352–358

    Article  PubMed  CAS  Google Scholar 

  • Yamanishi Y, Boyle DL, Pinkoski MJ, Mahboubi A, Lin T, Han Z, Zvaifler NJ, Green DR, Firestein GS (2002) Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol 160(1):123–130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timo Gaiser or Markus D. Siegelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gaiser, T., Siegelin, M.D. (2012). Diffuse Low-Grade Astrocytomas: P53-Mediated Inhibition of Angiogenesis. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 5. Tumors of the Central Nervous System, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2019-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2019-0_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2018-3

  • Online ISBN: 978-94-007-2019-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics