Skip to main content

Omentum in the Repair of Injured Tissue: Evidence for Omental Stem Cells

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 2

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 2))

  • 1337 Accesses

Abstract

The omentum is a fatty peritoneal fold with an apron-like structure that extends from the greater curvature of the stomach to cover most abdominal organs. Its unique biological properties in healing and regeneration have long been noted in surgical practice. In particular, the use of the omentum in a number of pathological conditions has demonstrated its capacity to revascularize ischemic areas, to absorb large amounts of edema fluids and to limit the formation of scar tissue at the site of injury. However, despite its clinical importance, the mechanisms underlying its role in healing and regeneration remain poorly understood. The current knowledge of stem cells could shed some light on these reparative properties of the omentum, first observed by surgeons a relatively long time ago, as recent studies provide evidence for the presence of stem cells in omentum. This fact has drawn attention to the omentum as a possible source of stem cells for use in cell therapies. For this purpose it is necessary to develop a deeper understanding of omentum biology and to learn from the results obtained using the omentum in surgical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagumuthu M, Das BB, Pattanayak SP, Rasananda M (2006) The omentum: a unique organ of exceptional versatility. Indian J Surg 68:136–141

    Google Scholar 

  • Baglioni S, Francalanci M, Squecco R, Lombardi A, Cantini G, Angeli R, Gelmini S, Guasti D, Benvenuti S, Annunziato F, Bani D, Liotta F, Francini F, Perigli G, Serio M, Luconi M (2009) Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J 23:3494–3505

    Article  PubMed  CAS  Google Scholar 

  • Cannaday J (1948) Some uses of undetached omentum in surgery. Am J Surg 76:502–505

    Article  PubMed  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  • Ferguson RL, Luken MG, Gettleman RA (2010) Pedicled omental lumbar grafts for lumbosacral adhesive arachnoiditis. In: sGoldsmith HS (ed) The omentum: basic research and clinical applications. Cine-Med, Woodbury, CT, pp 103–109

    Google Scholar 

  • García-Gómez I, Goldsmith HS, Angulo J, Prados A, López-Hervás P, Cuevas B, Dujovny M, Cuevas P (2005) Angiogenic capacity of human omental stem cells. Neurol Res 27:807–811

    Article  PubMed  Google Scholar 

  • Goldsmith HS (2007) Omental transposition in treatment of Alzheimer disease. J Am Coll Surg 205:800–804

    Article  PubMed  Google Scholar 

  • Goldsmith HS (2009) Treatment of acute spinal cord injury by omental transposition: a new approach. J Am Coll Surg 208:289–292

    Article  PubMed  Google Scholar 

  • Goldsmith HS, de los Santos R, Beattie EJ (1967) The relief of chronic lymphedema by omental transposition. Ann Surg 166:571–585

    Article  Google Scholar 

  • Goldsmith HS, Steward E, Duckett S (1985) Early application of pedicled omentum to the acutely traumatized spinal cord. Paraplegia 23:100–112

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith HS, Bacciu P, Cossu M, Pau A, Rodriguez G, Rosadini G, Ruju P, Viale ES, Turtas S, Viale GL (1990) Regional cerebral blood flow after omental transposition to the ischaemic brain in man. A five year follow-up study. Acta Neurochir (Wien) 106:145–152

    Article  CAS  Google Scholar 

  • Karasawa JTH (2010) Application of omental transplantation to moyamoya disease. In: Goldsmith HS (ed) The omentum: basic research and clinical applications. Cine-Med, Woodbury, CT, spp 111–127

    Google Scholar 

  • Kayali AG, Van Gunst K, Campbell IL, Stotland A, Kritzik M, Liu G, Flodström-Tullberg M, Zhang YQ, Sarvetnick N (2003) The stromal cell-derived factor-1alpha/CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas. J Cell Biol 163: 859–869

    Article  PubMed  CAS  Google Scholar 

  • Krist LFG, Koenen H, Calame W, van der Harten JJ, van der Linden JC, Eestermans IL, Meyer S, Beelen RHJ (1997) Ontogeny of milky spots in the human greater omentum: an immunochemical study. Anat Rec 249:399–404

    Article  PubMed  CAS  Google Scholar 

  • Liebermann-Meffert D (2000) The greater omentum: anatomy, embryology, and surgical applications. Surg Clin North Am 80:275–293

    Article  PubMed  CAS  Google Scholar 

  • Litbarg N, Gudehithlu K, Sethupathi P, Arruda J, Dunea G, Singh A (2007) Activated omentum becomes rich in factors that promote healing and tissue regeneration. Cell Tissue Res 328:487–497

    Article  PubMed  CAS  Google Scholar 

  • Luijendijk RW, de Lange DC, Wauters CC, Hop WC, Duron JJ, Pailler JL, Camprodon BR, Holmdahl L, van Geldorp HJ, Jeekel J (1996) Foreign material in postoperative adhesions. Ann Surg 223:242–248

    Article  PubMed  CAS  Google Scholar 

  • Maiorana A, Fierabracci A, Cianfarani S (2009) Isolation and characterization of omental adipose progenitor cells in children: a potential tool to unravel the pathogenesis of metabolic syndrome. Horm Res Paediatr 72:348–358

    Article  CAS  Google Scholar 

  • O’Shaughnessy L (1937) Surgical treatment of cardiac ischaemia. Lancet 229:185–194

    Article  Google Scholar 

  • Pinho MdFB, Hurtado SP, El-Cheikh MC, Borojevic R (2005) Haemopoietic progenitors in the adult mouse omentum: permanent production of B lymphocytes and monocytes. Cell Tissue Res 319:91–102

    Article  Google Scholar 

  • Shankle WR, Hara J (2010) Omentum transposition for treatment of Alzheimer’s disease: clinical outcome and future therapeutic interpretation. In: Goldsmith HS (ed) The omentum: basic research and clinical applications. Cine-Med, Woodbury, CT, pp 199–207

    Google Scholar 

  • Shimotsuma M, Kawata M, Hagiwara A, Takahashi T (1989) Milky spots in the human greater omentum. Cells Tissues Organs 136:211–216

    Article  CAS  Google Scholar 

  • Singh A, Patel J, Litbarg N, Gudehithlu K, Sethupathi P, Arruda J, Dunea G (2008) Stromal cells cultured from omentum express pluripotent markers, produce high amounts of VEGF, and engraft to injured sites. Cell Tissue Res 332:81–88

    Article  PubMed  CAS  Google Scholar 

  • Song L, Wang L, Shah PK, Chaux A, Sharifi BG (2010) Bioengineered vascular graft grown in the mouse peritoneal cavity. J Vasc Surg 52:994–1002

    Article  PubMed  Google Scholar 

  • Suh S, Kim J, Shin J, Kil K, Kim K, Kim H, Kim J (2004) Use of omentum as an in vivo cell culture system in tissue engineering. ASAIO J 50:464–467

    Article  PubMed  Google Scholar 

  • Tchkonia T, Lenburg M, Thomou T, Giorgadze N, Frampton G, Pirtskhalava T, Cartwright A, Cartwright M, Flanagan J, Karagiannides I, Gerry N, Forse RA, Tchoukalova Y, Jensen MD, Pothoulakis C, Kirkland JL (2007) Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am J Physiol Endocrinol Metab 292:E298–E307

    Article  PubMed  CAS  Google Scholar 

  • Toyoda M, Matsubara Y, Lin K, Sugimachi K, Furue M (2009) Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues. Cell Biochem Funct 27:440–447

    Article  PubMed  CAS  Google Scholar 

  • van Harmelen V, Röhrig K, Hauner H (2004) Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism 53:632–637

    Article  PubMed  Google Scholar 

  • Wilkosz S, Ireland G, Khwaja N, Walker M, Butt R, de Giorgio-Miller A, Herrick SE (2005) A comparative study of the structure of human and murine greater omentum. Anat Embryol 209:251–261

    Article  PubMed  Google Scholar 

  • Wu WL, Xu SQ, Liu M, Hua XM, Jiang F (2010a) Omental transposition following arachnoid excision to treat post-cerebral anoxia (cerebral palsy). In: Goldsmith HS (ed) The omentum: basic research and clinical applications. Cine-Med, Woodbury, CT, pp 167–172

    Google Scholar 

  • Wu WL, Xu SQ, Liu M, Hua XM, Zhong J (2010b) Omental transposition for treating the sequelae of viral encephalitis: a long term follow-up of 54 cases. In: Goldsmith HS (ed) The omentum: basic research and clinical applications. Cine-Med, Woodbury, CT, pp 159–165

    Google Scholar 

  • Zhang QX, Magovern CJ, Mack CA, Budenbender KT, Ko W, Rosengart TK (1997) Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. J Surg Res 67:147–154

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio García-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

García-Gómez, I. (2012). Omentum in the Repair of Injured Tissue: Evidence for Omental Stem Cells. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 2. Stem Cells and Cancer Stem Cells, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2016-9_30

Download citation

Publish with us

Policies and ethics