Skip to main content

Stroke Therapy Using Menstrual Blood Stem-Like Cells: Method

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 2

Abstract

Cerebrovascular diseases are the third leading cause of death and the primary cause of long-term disability in the United States. Most patients, excluded from the available treatment with plasminogen activator (tPA), present permanent neurological impairment and may benefit from restorative treatments with stem cells. Inflammation is a key feature in stroke and it plays a dual role, either increasing injury in early phases or impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. To date, there is no consensus about the most adequate cell type, route of delivery or timing for transplantation, as experimental and clinical studies are still inconclusive. Menstrual blood stem cells have been recently studied for their availability, proliferative capacity, pluripotentiality and angiogenic features, which make them a relevant resource for the treatment of stroke.

SGD and CVB are consultants, and PRS is co-founder and board member of Saneron-CCEL Therapeutics, Inc. PRS is also a shareholder in Cryo-Cell International, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169

    Article  PubMed  CAS  Google Scholar 

  • Antonucci I, Stuppia L, Kaneko Y, Yu S, Tajiri N, Bae EC, Chheda SH, Weinbren NL, Borlongan CV (2010) Amniotic fluid as rich source of mesenchymal stromal cells for transplantation therapy. Cell Transplant. Epub ahead of print, doi: 10.3727/096368910x53907

    Google Scholar 

  • Asplund K, Stegmayr B, Peltonen M (1998) From the twentieth to the twenty-first century: a public health perspective on stroke. In: Ginsberg MD, Bogousslavsky J (eds) Cerebrovascular disease pathophysiology, diagnosis and management. Blackwell Science, Cambridge, MA, pp 901–918

    Google Scholar 

  • Atochin DN, Fisher D, Demchenko IT, Thom SR (2000) Neutrophil sequestration and the effect of hyperbaric oxygen in a rat model of temporary middle cerebral artery occlusion. Undersea Hyperb Med 27:185–190

    PubMed  CAS  Google Scholar 

  • Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5:121–143

    Article  PubMed  Google Scholar 

  • Bliss TM, Andres RH, Steinberg GK (2010) Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 37:275–283

    Article  PubMed  Google Scholar 

  • Borlongan CV, Hadman M, Sanberg CD, Sanberg PR (2004) Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385–2389

    Article  PubMed  Google Scholar 

  • Borlongan CV, Kaneko Y, Maki M, Yu SJ, Ali M, Allickson JG, Sanberg CD, Kuzmin-Nichols N, Sanberg PR (2010) Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev 19:439–452

    Article  PubMed  CAS  Google Scholar 

  • Bratincsák A, Brownstein MJ, Cassiani-Ingoni R, Pastorino S, Szalayova I, Toth ZE, Key S, Nemeth K, Pickel J, Mezey E (2007) CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells 25:2820–2826

    Article  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (1999) Prevalence of disabilities and associated health conditions among adults, United States. Morb Mortal Wkly Rep 50:120–125

    Google Scholar 

  • Cervello I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martinez- Conejero JA, Galan A, Martinez-Romero A, Martinez S, Navarro I, Ferro J, Horcajadas JA, Esteban FJ, O’Connor JE, Pellicer A, Simon C (2010) Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One 5:e10964

    Article  PubMed  Google Scholar 

  • Chan RW, Schwab KE, Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 70:1738–1750

    Article  PubMed  CAS  Google Scholar 

  • Cho NH, Park YK, Kim YT, Yang H, Kim SK (2004) Lifetime expression of stem cell markers in the uterine endometrium. Fertil Steril 81:403–407

    Article  PubMed  CAS  Google Scholar 

  • Connolly ES, Jr., Winfree CJ, Springer TA, Naka Y, Liao H, Yan SD, Stern DM, Solomon RA, Gutierrez-Ramos JC, Pinsky DJ (1996) Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 97:209–216

    Article  PubMed  CAS  Google Scholar 

  • Drago H, Marin GH, Sturla F, Roque G, Martire K, Diaz Aquino V, Lamonega R, Gardiner C, Ichim T, Riordan N, Raimondi JC, Bossi S, Samadikuchaksaraei A, van Leeuwen M, Tau JM, Nunez L, Larsen G, Spretz R, Mansilla E (2010) The next generation of burns treatment: intelligent films and matrix, controlled enzymatic debridement, and adult stem cells. Transplant Proc 42:345–349

    Article  PubMed  CAS  Google Scholar 

  • Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87:179–197

    Article  PubMed  CAS  Google Scholar 

  • Emsley HC, Smith CJ Tyrrell PJ, Hopkins SJ (2008) Inflammation in acute ischemic stroke and its relevance to stroke critical care. Neurocrit Care 9:125–138

    Article  PubMed  CAS  Google Scholar 

  • Guzman R, Choi R, Gera A, De Los Angeles A, Andres RH, Steinberg GK (2008) Intravascular cell replacement therapy for stroke. Neurosurg Focus 24:E15

    Article  PubMed  Google Scholar 

  • Hess DC, Borlongan CV (2008) Cell-based therapy in ischemic stroke. Expert Rev Neurother 8:1193–1201

    Article  PubMed  CAS  Google Scholar 

  • Hida N, Nishiyama N, Miyoshi S, Kira S Segawa K, Uyama T, Mori T, Miyado K, Ikegami Y, Cui C, Kiyono T, Kyo S, Shimizu T, Okano T, Sakamoto M, Ogawa S, Umezawa A (2008) Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells 26:1695–1704

    Article  PubMed  CAS  Google Scholar 

  • Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27:1798–1805

    Article  PubMed  CAS  Google Scholar 

  • Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Cho HS, Yang SH, Shin JY, Kim JS, Lee ST, Chu K, Roh JK, Kim SU, Park CG (2009) Soluble mediators from human neural stem cells play a critical role in suppression of T-cell activation and proliferation. J Neurosci Res 87:2264–2272

    Article  PubMed  CAS  Google Scholar 

  • Kleindorfer D, Lindsell CJ, Brass L, Koroshetz W, Broderick JP (2008) National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate. Stroke 39:924–928

    Article  PubMed  Google Scholar 

  • Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, Decesare S, Jovin T, Zafonte R, Lebowitz J, Flickinger JC, Tong D, Marks MP, Jamieson C, Luu D, Bell-Stephens T, Teraoka J (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45

    Article  PubMed  Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131:616–629

    Article  PubMed  Google Scholar 

  • Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T, Arase T, Oda H, Uchida H, Asada H, Ito M, Yoshimura Y, Maruyama T, Okano H (2010) Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One 5:e10387

    Article  PubMed  Google Scholar 

  • Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, Thebaud B, Riordan NH (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5:57

    Article  PubMed  CAS  Google Scholar 

  • Murphy MP, Wang H, Patel AN, Kambhampati S, Angle N, Chan K, Marleau AM, Pyszniak A, Carrier E, Ichim TE, Riordan NH (2008) Allogeneic endometrial regenerative cells: an “Off the shelf solution” for critical limb ischemia? J Transl Med 6:45

    Article  PubMed  Google Scholar 

  • Padykula HA (1991) Regeneration in the primate uterus: the role of stem cells. Ann N Y Acad Sci 622:47–56

    Article  PubMed  CAS  Google Scholar 

  • Park DH, Eve DJ, Musso J 3rd, Klasko SK, Cruz E, Borlongan CV, Sanberg PR (2009) Inflammation and stem cell migration to the injured brain in higher organisms. Stem Cells Dev 18:693–702

    Article  PubMed  CAS  Google Scholar 

  • Patel AN, Silva F (2008) Menstrual blood stromal cells: the potential for regenerative medicine. Regen Med 3:443–444

    Article  PubMed  Google Scholar 

  • Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG (2008) Multipotent Menstrual Blood Stromal Stem Cells: Isolation, characterization and Differentiation. Cell Transplant 17:303–311

    Article  PubMed  Google Scholar 

  • Prianishnikov VA (1978) A functional model of the structure of the epithelium of normal, hyperplastic and malignant human endometrium: a review. Gynecol Oncol 6:420–428

    Article  PubMed  CAS  Google Scholar 

  • Taylor HS (2004) Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 292:81–85

    Article  PubMed  CAS  Google Scholar 

  • The National Institute of Neurological Disorders (NINDS) and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587

    Article  Google Scholar 

  • Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, Taylor HS (2011) Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med 15:747–755

    Google Scholar 

  • Xu, J, Kochanek MA, Murphy BS, Tejada-Vera B (2010) Deaths, final data for 2007. Natl Vital Stat Rep 58:1–134

    Google Scholar 

  • Zhong Z, Patel AN, Ichim TE, Riordan NH, Wang H, Min WP, Woods EJ, Reid M, Mansilla E, Marin GH, Drago H, Murphy MP, Minev B (2009) Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med 7:15

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesario V. Borlongan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rodrigues, M.C.O. et al. (2012). Stroke Therapy Using Menstrual Blood Stem-Like Cells: Method. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 2. Stem Cells and Cancer Stem Cells, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2016-9_20

Download citation

Publish with us

Policies and ethics