Skip to main content

Rat Mesenchymal Cell CD44 Surface Markers: Role in Cardiomyogenic Differentiation

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 2

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 2))

  • 1341 Accesses

Abstract

We reported that hyaluronic acid (HA) containing silk fibroin (SF) patches markedly improved cardiomyogenic differentiation of 5-aza inducing rat mesenchymal stem cells (rMSCs). It is well known that MSCs contain an abundant of CD44 surface markers, and HA is the receptor of those markers. Examining the roles of CD44 markers on cardiomyogenic differentiation of rMSCs might help to design new cardiac patches for cell therapy in infarcted hearts. To study the issue, 5-aza inducing rMSCs with or without a CD44-blockage treatment was cultured in SF/HA cardiac patches; the expressions of cardiac genes and specific cardiac proteins as an index of cardiomyogenic differentiation were examined in the end of the cultivation. It was found that the expressions of cardiac genes such as Gata4 and Nkx2.5 and proteins such as cardiotin and connexion 43, and were significantly decreased for the rMSCs with a CD44-blockage treatment. We conclude that the surface markers of CD44 of rMSCs highly modulate the cardiomyogenic differentiation of the cells when they are cultivated on SF/HA cardiac patches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison DD, Vasco N, Braun KR, Wight TN, Grande-Allen KJ (2007) The effect of endogenous overexpression of hyaluronan synthases on material, morphological, and biochemical properties of uncrosslinked collagen biomaterials. Biomaterials 28:5509–5517

    Article  PubMed  CAS  Google Scholar 

  • Arminan A, Gandia C, Bartual M, Garcia-Verdugo JM, Lledo E, Mirabet V, Llop M, Barea J, Montero JA, Sepulveda P (2009) Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells Dev 18:907–918

    Article  PubMed  CAS  Google Scholar 

  • Charbord P, Livne E, Gross G, Haupl T, Neves NM, Marie P, Bianco P, Jorgensen C (2010) Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience. Stem Cell Rev 7:32–42

    Google Scholar 

  • Chung C, Burdick JA (2009) Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A 15, 243–254

    Article  PubMed  CAS  Google Scholar 

  • Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 104:11298–11303

    Article  PubMed  CAS  Google Scholar 

  • Ghatpande S, Brand T, Zile M, Evans T (2006) Bmp2 and Gata4 function additively to rescue heart tube development in the absence of retinoids. Dev Dyn 235:2030–2039

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom M, Johansson B, Engstrom-Laurent A (2006) Hyaluronan and its receptor CD44 in the heart of newborn and adult rats. Anat Rec A Discov Mol Cell Evol Biol 288:587–592

    PubMed  Google Scholar 

  • Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello-Romanazzi G, Sanavio F, Stamenkovic I, Biancone L, Camussi G (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72:430–441

    Article  PubMed  CAS  Google Scholar 

  • Ilangumaran S, Borisch B, Hoessli DC (1999) Signal transduction via CD44: role of plasma membrane microdomains. Leuk Lymphoma 35:455–469

    Article  PubMed  CAS  Google Scholar 

  • Knudson W, Loeser RF (2002) CD44 and integrin matrix receptors participate in cartilage homeostasis. Cell Mol Life Sci 59:36–44

    Article  PubMed  CAS  Google Scholar 

  • Lemonnier M, Buckingham ME (2004) Characterization of a cardiac-specific enhancer, which directs {alpha}-cardiac actin gene transcription in the mouse adult heart. J Biol Chem 279:55651–85565

    Article  PubMed  CAS  Google Scholar 

  • Murphy JF, Lennon F, Steele C, Kelleher D, Fitzgerald D, Long AC (2005) Engagement of CD44 modulates cyclooxygenase induction, VEGF generation, and proliferation in human vascular endothelial cells. FASEB J 19:446–448

    PubMed  CAS  Google Scholar 

  • Ostergaard K, Salter DM, Andersen CB, Petersen J, Bendtzen K (1997) CD44 expression is up-regulated in the deep zone of osteoarthritic cartilage from human femoral heads. Histopathology 31:451–459

    Article  PubMed  CAS  Google Scholar 

  • Pries R, Witrkopf N, Trenkle T, Nitsch SM, Wollenberg B (2008) Potential stem cell marker CD44 is constitutively expressed in permanent cell lines of head and neck cancer. In Vivo 22:89–92

    PubMed  Google Scholar 

  • Savani RC, Cao G, Pooler PM, Zaman A, Zhou Z, DeLisser HM (2001) Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem 276:36770–3678

    Article  PubMed  CAS  Google Scholar 

  • Tan MY, Zhi W, Wei RQ, Huang YC, Zhou KP, Tan B, Deng L, Luo JC, Li XQ, Xie HQ, Yang ZM (2009) Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials 30:3234–3240

    Article  PubMed  CAS  Google Scholar 

  • Tremmel M, Matzke A, Albrecht I, Laib AM, Olaku V, Ballmer-Hofer K, Christofori G, Heroult M, Augustin HG, Ponta H, Orian-Rousseau V (2009) A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood 114:5236–5244

    Article  PubMed  CAS  Google Scholar 

  • van den Boom M, Sarbia M, von Wnuck Lipinski K, Mann P, Meyer-Kirchrath J, Rauch BH, Grabitz K, Levkau B, Schror K, Fischer JW (2006) Differential regulation of hyaluronic acid synthase isoforms in human saphenous vein smooth muscle cells: possible implications for vein graft stenosis. Circ Res 98:36–44

    Article  PubMed  Google Scholar 

  • Yang MC, Wang SS, Chou NK, Chi NH, Huang YY, Chang YL, Shieh MJ, Chung TW (2009) The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Biomaterials 30:3757–3765

    Article  PubMed  CAS  Google Scholar 

  • Yang MC, Chi NH, Chou NK, Huang YY, Chung TW, Chang YL, Liu HC, Shieh MJ, Wang SS (2010) The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin – Hyaluronic acid cardiac patches. Biomaterials 31:854–862

    Article  PubMed  CAS  Google Scholar 

  • Yoon J, Min BG, Kim YH, Shim WJ, Ro YM, Lim DS (2005) Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol 60:277–284

    Article  PubMed  Google Scholar 

  • Zhou J, Haggerty JG, Milstone LM (1999) Growth and differentiation regulate CD44 expression on human keratinocytes. In Vitro Cell Dev Biol Anim 35:228–235

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML, Demetriou A, Wu GD (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24:928–935

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tze -Wen Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chung, T.W., Yang, MC. (2012). Rat Mesenchymal Cell CD44 Surface Markers: Role in Cardiomyogenic Differentiation. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 2. Stem Cells and Cancer Stem Cells, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2016-9_19

Download citation

Publish with us

Policies and ethics