Skip to main content

MYC as a Multifaceted Regulator of Pluripotency and Reprogramming

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 2

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 2))

  • 1322 Accesses

Abstract

Pluripotent stem cells have the ability to generate cellular descendants of the three primary germ layers. For this reason, they are a viable resource in the generation of specialized cells for tissue regeneration and drug development. In the embryo and in vitro culture, pluripotent cells express specific factors that maintain the pluripotent state. Such factors promote the expression of other pluripotency genes to maintain self-renewal and impede differentiation. The proto-oncogene Myc is a central regulator that holds multiple roles in the control of pluripotency. Key functions include maintenance of the pluripotent cell cycle, metabolic regulation and suppression of differentiation pathways. Myc target genes number in the thousands, so it is likely that novel aspects of Myc function in pluripotent stem cell biology remain to be fully elucidated. This chapter deals with our current understanding of Myc’s contribution to pluripotency, its involvement in reprogramming and its contribution to cancer stem cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bao S, Tang F, Li X, Hayashi K, Gillich A, Lao K, Surani MA (2009) Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461:1292–1295

    Article  PubMed  CAS  Google Scholar 

  • Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH, White EL, Davis AC, Ihle JN, Cleveland JL (2002) c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 16:2530–2543

    Article  PubMed  CAS  Google Scholar 

  • Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  PubMed  CAS  Google Scholar 

  • Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452

    Article  PubMed  CAS  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    Article  PubMed  CAS  Google Scholar 

  • Brenner C, Deplus R, Didelot C, Loriot A, Vire E, De Smet C, Gutierrez A, Danovi D, Bernard D, Boon T, Pelicci PG, Amati B, Kouzarides T, de Launoit Y, Di Croce L, Fuks F (2005) Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J 24:336–346

    Article  PubMed  CAS  Google Scholar 

  • Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005) LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132:885–896

    Article  PubMed  CAS  Google Scholar 

  • Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, Beer MA (2009) Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci 106:3384

    Article  PubMed  CAS  Google Scholar 

  • Cotterman R, Jin VX, Krig SR, Lemen JM, Wey A, Farnham PJ, Knoepfler PS (2008) N-Myc regulates a widespread euchromatic program in the human genome partially independent of its role as a classical transcription factor. Cancer Res 68:9654–9662

    Article  PubMed  CAS  Google Scholar 

  • Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19:1

    PubMed  CAS  Google Scholar 

  • Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S (2009) Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41:1350–1353

    Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129

    Article  PubMed  CAS  Google Scholar 

  • Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203

    Article  PubMed  CAS  Google Scholar 

  • Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassady JP, Staerk J, Carey BW, Lengner CJ, Foreman R, Love J (2009) Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4:513–524

    Article  PubMed  CAS  Google Scholar 

  • Humphrey RK, Beattie GM, Lopez AD, Bucay N, King CC, Firpo MT, Rose‐John S, Hayek A (2004) Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells 22:522–530

    Article  PubMed  CAS  Google Scholar 

  • Jordan CT (2004) Cancer stem cell biology: from leukemia to solid tumors. Curr Opin Cell Biol 16:708–712

    Article  PubMed  CAS  Google Scholar 

  • Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27:459–461

    Google Scholar 

  • Kelly DL, Rizzino A (2000) DNA microarray analyses of genes regulated during the differentiation of embryonic stem cells. Mol Reprod Dev 56:113–123

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Chu J, Shen X, Wang J, and Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Labosky PA, Barlow DP, Hogan BL (1994) Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found Symp 182:157–168; discussion 168-178

    PubMed  CAS  Google Scholar 

  • Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN (2009a) Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28:3157–3170

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Lin CW, Tanaka H, Fero ML, Eisenman RN (2009b) Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc 4:e7839

    Google Scholar 

  • Malynn BA, de Alboran IM, O’Hagan RC, Bronson R, Davidson L, DePinho RA, Alt FW (2000) N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev 14:1390–1399

    PubMed  CAS  Google Scholar 

  • Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546

    Article  PubMed  CAS  Google Scholar 

  • Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8:976–990

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55

    Article  PubMed  CAS  Google Scholar 

  • Najm FJ, Chenoweth JG, Anderson PD, Nadeau JH, Redline RW, McKay RDG, Tesar PJ (2011) Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell 8:318–325

    Article  PubMed  CAS  Google Scholar 

  • Shachaf CM, Kopelman AM, Arvanitis C, Karlsson Å, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431:1112–1117

    Article  PubMed  CAS  Google Scholar 

  • Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19:857–864

    Article  PubMed  CAS  Google Scholar 

  • Singh AM, Dalton S (2009) The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell 5:141–149

    Article  PubMed  CAS  Google Scholar 

  • Smith K, Dalton S (2010) Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regen Med 5:947–959

    Article  PubMed  CAS  Google Scholar 

  • Smith KN, Singh AM, Dalton S (2010) Myc represses primitive endoderm differentiation in pluripotent stem cells. Cell Stem Cell 7:343–354

    Article  PubMed  CAS  Google Scholar 

  • Smith KN, Lim JM, Wells L, Dalton S (2011) Myc orchestrates a regulatory network required for the establishment and maintenance of pluripotency. Cell Cycle 10:592–597

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay R (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature (London) 448:196

    Article  CAS  Google Scholar 

  • Wang ZX, Teh CH, Chan CM, Chu C, Rossbach M, Kunarso G, Allapitchay TB, Wong KY, Stanton LW (2008) The transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells 26:2791–2799

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Cetinkaya C, Munoz-Alonso MJ, von der Lehr N, Bahram F, Beuger V, Eilers M, Leon J, Larsson LG (2003) Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22:351–360

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Li W, Zhu S, Joo JY, Do JT, Xiong W, Kim JB, Zhang K, Schöler HR, Ding S (2010) Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules. J Biol Chem 285:29676

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Dalton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Smith, K.N., Dalton, S. (2012). MYC as a Multifaceted Regulator of Pluripotency and Reprogramming. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 2. Stem Cells and Cancer Stem Cells, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2016-9_14

Download citation

Publish with us

Policies and ethics