Skip to main content

Implications of Cytokines in Cochlear Pathophysiology

  • Chapter
  • First Online:
Mechanical Stretch and Cytokines

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 5))

Abstract

The cochlea is a mechanosensitive organ that perceives sounds. Hair cells with mechanosensitive transducer channels are the sensory cells of hearing. The stria vascularis generates specific electrochemical gradients of potassium and an endocochlear potential that are needed for the mechanoelectrical transduction of hair cells. Spiral ganglion neurons form the VIIIth cranial nerve and conduct action potentials. So far, little is known about the effects of cytokines/chemokines on the cochlear physiology in auditory perception. Recent reports have clarified the involvements of cytokines in the death of cochlear cells in various cochlear injuries. On the other hand, neurotrophic factors play key roles in the development and maintenance of spiral ganglion neurons. This review summarizes what is currently known about the involvement of cytokines in cochlear pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Hachem RN, Zine A, Van De V, De Water TR (2010) The injured cochlea as a target for inflammatory processes, initiation of cell death pathways and application of related otoprotective strategies. Recent Pat Drug Discov 5:147–163

    Article  CAS  Google Scholar 

  • Altschuler RA, Cho Y, Ylikoski J, Pirvola U, Magal E, Miller JM (1999) Rescue and regrowth of sensory nerves following deafferentation by neurotrophic factors. Ann N Y Acad Sci 884:305–311

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281:675–677

    Article  PubMed  CAS  Google Scholar 

  • Dallos P (2008) Cochear amplification, outer hair cells and prestin. Curr Opin Neurobiol 18:370–376

    Article  PubMed  CAS  Google Scholar 

  • Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Cheng WH, Sengupta S, He DZ, Zuo J (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58:299–301

    Article  Google Scholar 

  • Ding D, Jiang H, Wang P, Salvi R (2007) Cell death after co-administration of cisplatin and ethacrynic acid. Hear Res 226:129–139

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Jiang H, Salvi RJ (2009) Mechanisms of rapid sensory hair-cell death following co-administration of gentamicin and ethacrynic acid. Hear Res 259:16–23

    Article  PubMed  Google Scholar 

  • Dinh CT, Van De Water TR (2009) Blocking pro-cell-death pathways to conserve hearing. Audiol Neurootol 14:383–392

    Article  PubMed  CAS  Google Scholar 

  • Dinh CT, Haake S, Chen S, Hoang K, Nong E, Eshraghi AA, Balkany TJ, Van De Water TR (2008a) Dexamethasone protects organ of Corti explants against tumor necrosis factor -alpha-induced loss of auditory hair cells and alters the expression levels of apoptosis-related genes. Neuroscience 157:405–413

    Article  PubMed  CAS  Google Scholar 

  • Dinh CT, Hoang K, Haake S, Chen S, Angeli S, Nong E, Eshraghi AA, Balkany TJ, Van De Water TR (2008b) Biopolymer-released dexamethasone prevents tumor necrosis factor alpha-induced loss of auditory hair cells in vitro: implications toward the development of a drug-eluting cochlear implant electrode array. Otol Neurotol 29:1012–1019

    Article  PubMed  Google Scholar 

  • Fritzsch B, Silos-Santiago I, Bianchi LM, Farinas I (1997) The role of neurotrophic factors in regulating the development of inner ear innervations. Trends Neurosci 20:159–164

    Article  PubMed  CAS  Google Scholar 

  • Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H (2006) Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 83:575–583

    Article  PubMed  CAS  Google Scholar 

  • Gao WQ (1999) Role of neurotrophins and lectins in prevention of ototoxicity. Ann N Y Acad Sci 884:312–327

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Muller U (2009) Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139:33–44

    Article  PubMed  CAS  Google Scholar 

  • Hartmann WM (1995) The physical description of signals. In: Moore BCJ (ed) Hearing. Academic, San Diego, CA, pp 1–40

    Google Scholar 

  • Himeno C, Komeda M, Izumikawa M, Takemura K, Yagi M, Wiping Y, Doi T, Kuriyama H, Miller JM, Yamashita T (2002) Intra-cochlear administration of dexamethasone attenuates aminoglycoside ototoxicity in the guinea pig. Hear Res 167:61–70

    Article  PubMed  CAS  Google Scholar 

  • Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 22:180–194

    Article  Google Scholar 

  • Hirose Y, Tabuchi K, Oikawa K, Murashita H, Sakai S, Hara A (2007) The effects of the glucocorticoid receptor antagonist RU486 and phospholipase A2 inhbitor quinacrine on acoustic injury of the mouse cochlea. Neurosci Lett 413:63–67

    Article  PubMed  CAS  Google Scholar 

  • Ichimiya I, Suzuki M, Hirano T, Mogi G (1999) The influence of pneumococcal otitis media on the cochlear lateral wall. Hear Res 131:128–134

    Article  PubMed  CAS  Google Scholar 

  • Ichimiya I, Yoshida K, Hirano T, Suzuki M, Mogi G (2000) Significance of spiral ligament fibrocytes with cochlear inflammation. Int J Pediatr Otorhinolaryngol 56:45–51

    Article  PubMed  CAS  Google Scholar 

  • Jabba SV, Oelke A, Singh R, Maganti RJ, Fleming S, Wall SM, Everett LA, Green ED, Wangemann P (2006) Macrophage invasion contributes to degeneration of stria vascularis in Pendred syndrome mouse model. BMC Med 4:37

    Article  PubMed  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell–s transduction channels at the hair bundle–s top by iontophoretic application of a channel blocker. Neuron 7:409–420

    Article  PubMed  CAS  Google Scholar 

  • Kahn M, Szczepek AJ, Haupt H, Olze H, Mazurek B (2010) Expression of the proinflammtory cytokines in cochlear explants cultures: influence of normoxia and hypoxia. Neurosci Lett 479:249–252

    Article  Google Scholar 

  • Kalinec F, Webster P, Maricle A, Guerrero D, Chakravarti DN, Chakravarti B, Gellibolian R, Kalinec G (2009) Glucocorticoid-stimulated, transcription-independent release of annexin A1 by cochlear Hensen cells. Br J Pharmacol 158:1820–1834

    Article  PubMed  CAS  Google Scholar 

  • Keithley EM, Wang X, Barkdull GC (2008) Tumor necrosis alpha can induce recruitment of inflammatory cells to the cochlea. Otol Neurotol 29:854–859

    Article  PubMed  Google Scholar 

  • Kim EK, Choi E-J (2009) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Google Scholar 

  • Kim HJ, Lee JH, Kim SJ, Oh GS, Moon HD, Kwon KB, Park C, Park BH, Lee HK, Chung SY, Park R, So HS (2010) Roles of NADPH oxidase in cisplatin-induced reactive oxygen species generation and ototoxicity. J Neurosci 30:3933–3946

    Article  PubMed  CAS  Google Scholar 

  • Maeda K, Yoshida K, Ichimiya I, Suzuki M (2005) Dexamethasone inhibits tumor necrosis factor-alpha-induced cytokine secretion from spiral ligament fibrocytes. Hear Res 202:154–160

    Article  PubMed  CAS  Google Scholar 

  • McGuinness SL, Shepherd RK (2005) Exogenous BDNF rescues rat spiral ganglion neurons in vivo. Otol Neurotol 26:1064–1072

    Article  PubMed  Google Scholar 

  • Meltser I, Tahera Y, Canlon B (2010) Differential activation of mitogen-activated protein kinases and brain-derived neurotrophic factor after temporary or permanent damage to a sensory system. Neuroscience 165:1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Miller JM, Chi DH, O–Keeffe LJ, Kruzska P, Raphael Y, Altschuler RA (1997) Neurotrophins can enhance spiral ganglion cell survival after inner ear hair cell loss. Int J Dev Neurosci 15:631–643

    Article  PubMed  CAS  Google Scholar 

  • Miyao M, Firestein GS, Keithley EM (2008) Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope 118:1–8

    Article  Google Scholar 

  • Mou K, Adamson CL, Davis RL (1998) Time-dependence and cell-type specificity of synergistic neurotrophin actions on spiral ganglion neurons. J Comp Neurol 402:129–139

    Article  PubMed  CAS  Google Scholar 

  • Murai N, Kirkegaard M, Jariebark LL, Risling M, Sneson A, Ulfendahl M (2008) Activation of JNK in the inner ear following impulse noise exposure. J Neurotrauma 25:72–77

    Article  PubMed  Google Scholar 

  • Nadol JB Jr (1997) Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol Head Neck Surg 117:220–228

    Article  PubMed  Google Scholar 

  • Nakamagoe M, Tabuchi K, Uemaetomari I, Nishimura B, Hara A (2010) Estradiol protects the cochlea against gentamicin ototoxicity through inhibition of JNK pathway. Hear Res 261:67–74

    Article  PubMed  CAS  Google Scholar 

  • Nam SI (2006) Interleukin-1beta up-regulates inducible nitric oxide by way of phosphoinositide 3-kinase-dependent in a cochlear cell model. Laryngoscope 116:2166–2170

    Google Scholar 

  • Nicotera TM, Hu BH, Henderson D (2003) The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J Assoc Res Otolaryngol 4:466–477

    Article  PubMed  Google Scholar 

  • Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol (London) 359:189–217

    CAS  Google Scholar 

  • Rahman MU, Poe DS, Choi HK (2001) Autoimmune vestibule-cochlear disorders. Curr Opin Rheumatol 13:184–189

    Article  PubMed  CAS  Google Scholar 

  • Ryan AF, Harris JP, Keithley EM (2002) Immune-mediated hearing loss: basic mechanisms and options for therapy. Acta Otolayrngol Suppl 548:38–43

    Article  Google Scholar 

  • Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM (2002) Tumor necrosis factor-alpha, an initiator, and etanercept, an inhibitor of cochlear inflammation. Laryngoscope 112:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM (2003) Proinflammatory cytokined expression in the endolymphatic sac during inner ear inflammation. J Assoc Res Otorlayngol 4:139–147

    Article  Google Scholar 

  • Sha S-H, Chen F-Q, Schacht J (2009) Activation of cell death pathways in the inner ear of the aging CBA/J mouse. Hear Res 254:92–99

    Article  PubMed  Google Scholar 

  • Shibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE, Raphael Y (2010) Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 223:464–472

    Article  PubMed  CAS  Google Scholar 

  • So H, Kim H, Lee JH, Park C, Kim Y, Kim E, Kim JK, Yun KJ, Lee KM, Lee HY, Moon SK, Lim DJ, Park R (2007) Cisplatin ototoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol 8:338–355

    Article  PubMed  Google Scholar 

  • So H, Kim H, Kim Y, Kim E, Pae HO, Chung HT, Kim HJ, Kwon KB, Lee KM, Lee HY, Moon SK, Park R (2008) Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/Ho-1. J Assoc Res Otolaryngol 8:338–355

    Google Scholar 

  • Staecker H, Kopke R, Malgange B, Lefebvre P, Van de Water TR (1996) NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. NeuroReport 7:889–894

    Article  PubMed  CAS  Google Scholar 

  • Sugawara M, Muritie JC, Stankovic KM, Lierman MC, Corfas G (2007) Dyanmic patterns of neurotrophin 3 expression in the postnatal mouse inner ear. J Com Neurol 501:30–37

    Article  CAS  Google Scholar 

  • Sun W, Salvi RJ (2009) Brain derived neurotrophic factor and neurotrophic factor 3 modulate neurotransmitter receptor expressions on developing spiral ganglion neurons. Neuroscience 164:1854–1866

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi K, Hara A (2009) Mechanosensitivity of the cochlea. In: Kamkin A, Kiseleva I (Eds) Mechanosensitivity of the nervous system. Springer, New York, NY, pp 107–114

    Chapter  Google Scholar 

  • Tabuchi K, Oikawa K, Uemaetomari I, Tsuji S, Wada T, Hara A (2003) Glucocorticoids and dehydroepiandrosterone sulfate ameliorate ischemia-induced injury of the cochlea. Hear Res 180:51–60

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi K, Suzuki M, Mizuno A, Hara A (2005) Hearing impairment in TRPV4 knockout mice. Neurosci Lett 382:304–308

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi K, Murashita H, Sakai S, Hoshino T, Uemaetomari I, Hara A (2006) Therapeutic time window of methylprednisolone in acoustic injury. Otol Neurotol 27:1176–1179

    Article  PubMed  Google Scholar 

  • Tabuchi K, Park K, Chavez E, Ryan AF (2007) Role of inhibitor of apoptosis protein in gentamicin-induced cochlear hair cell damage. Neuroscience 149:213–222

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi K, Oikawa K, Hoshino T, Nishimura B, Hayashi K, Yanagawa T, Warabi E, Ishii T, Tanaka S, Hara A (2010) Cochlear protection from acoustic injury by inhibitors of p38 mitogen-activated protein kinase and sequestosome 1 stress protein. Neuroscience 166:665–670

    Article  PubMed  CAS  Google Scholar 

  • Tornabene SV, Sato K, Pham L, Billings P, Keithley EM (2006) Immune cell recruitment following acoustic trauma. Hear Res 222:115–124

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Fujioka M, Kanzaki S, Okano HJ, Shibata S, Yamashita D, Masuda M, Mihara M, Ohsugi Y, Ogawa K, Okano H (2010) Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in nois-damaged mice cochlea. Neurosci Res 66:345–352

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Van De Water TR, Bonny C, de Ribaupierre F, Puel JL, Zine A (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci 23:8596–8607

    PubMed  CAS  Google Scholar 

  • Wei X, Zhao L, Liu J, Dodel RC, Farlow MR, Du Y (2005) Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation. Neuroscience 131:513–521

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Ding D, Salvi R (2010) Salicylate-induced degeneration of the cochlea spiral ganglion neurons-apoptosis signaling. Neuroscience 168:288–299

    Article  PubMed  CAS  Google Scholar 

  • Yates GK (1995) Cochlear structure and function. In: Moore BCJ (ed) Hearing. Academic, San Diego, CA, pp 41–74

    Google Scholar 

  • Ylikoski J, Xing-Qun L, Virkkala J, Pirvola U (2002) Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death. Hear Res 163:71–81

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Ichimiya I, Suzuki M, Mogi G (1999) Effect of proinflammatory cytokines on cultured spiral ligament fibrocytes. Hear Res 137:155–159

    Article  PubMed  CAS  Google Scholar 

  • Zheng JL, Gao WQ (1996) Differential damage to auditory neurons and hair cells by ototoxins and neuroprotection by specific neurotrophins in rat cochlear organotypic cultures. Eur J Neurosci 8:1897–1905

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Liu Q, Davis RL (2005) Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3. J Neurosci 25:7558–7566

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Pyykko I, Sutinen P, Toppila E (2005) Vibration induced hearing loss in guinea pig cochlea: expression of TNF-alpha and VEGF. Hear Res 202:13–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a Grant-in-aid for Scientific Research ((C) 20591969) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tabuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tabuchi, K., Hara, A. (2012). Implications of Cytokines in Cochlear Pathophysiology. In: Kamkin, A., Kiseleva, I. (eds) Mechanical Stretch and Cytokines. Mechanosensitivity in Cells and Tissues, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2004-6_8

Download citation

Publish with us

Policies and ethics