Skip to main content

Mechanosensitive Pro-inflammatory Gene Expression in Vascular Cells

  • Chapter
  • First Online:

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 5))

Abstract

A delicate balance between circumferential wall tension (CWT) or stretch and unidirectional fluid shear stress (FSS), the two principle haemodynamic forces to which the resident cells of the vessel wall are exposed to, governs their phenotype. FSS by virtue of its stimulatory effect on endothelial nitric oxide (NO) synthase activity and expression has been designated as an anti-inflammatory and homeostatic force. In contrast, CWT has been marked as a potentially detrimental pro-inflammatory force causing, e.g. formation of reactive oxygen species, stimulation of stress-activated protein kinases and a prolonged rise in intracellular free calcium. Moreover, with zyxin localised to focal adhesions, a mechanosensitive protein has been characterised that specially transduces an increase in CWT to the nucleus of both endothelial and smooth muscle cells where it orchestrates a complex and partially pro-inflammatory change in gene expression. Tilting the balance between FSS and CWT towards CWT as the result of an inadequately low FSS, e.g. at arterial bifurcations, or volume and/or pressure overload as, e.g. in hypertension, is generally thought to be responsible for both adaptive and maladaptive vascular remodelling processes including arteriogenesis, atherosclerosis, restenosis following angioplasty, and hypertension-induced arterial remodelling. Starting with a summary of the molecular mechanisms governing CWT and FSS-mediated signal transduction in vascular cells, the differential and variable impact of haemodynamically induced pro-inflammatory gene expression on these remodelling processes is discussed herein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abate C, Patel L, Rauscher FJ 3rd, Curran T (1990) Redox regulation of fos and jun DNA-binding activity in vitro. Science 249:1157–1161

    PubMed  CAS  Google Scholar 

  • Amma H, Naruse K, Ishiguro N, Sokabe M (2005) Involvement of reactive oxygen species in cyclic stretch-induced NF-κB activation in human fibroblast cells. Br J Pharmacol 145:364–373

    PubMed  CAS  Google Scholar 

  • Asif AR, Hecker M, Cattaruzza M (2009a) Disinhibition of SOD-2 expression to compensate for a genetically determined NO deficit in endothelial cells – brief report. Arterioscler Thromb Vasc Biol 29:1890–1893

    PubMed  CAS  Google Scholar 

  • Asif AR, Oellerich M, Armstrong VW, Hecker M, Cattaruzza M (2009b) T-786C polymorphism of the NOS-3 gene and the endothelial cell response to fluid shear stress-a proteome analysis. J Proteome Res 8:3161–3168

    PubMed  CAS  Google Scholar 

  • Bach I (2000) The LIM domain: regulation by association. Mech Dev 91:5–17

    PubMed  CAS  Google Scholar 

  • Beckerle MC (1997) Zyxin: zinc fingers at sites of cell adhesion. Bioessays 19:949–957

    PubMed  CAS  Google Scholar 

  • Behm CZ, Kaufmann BA, Carr C, Lankford M, Sanders JM, Rose CE, Kaul S, Lindner JR (2008) Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis. Circulation 117:2902–2911

    PubMed  CAS  Google Scholar 

  • Boon RA, Horrevoets AJ (2009) Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie 29:39–43

    PubMed  CAS  Google Scholar 

  • Busse R, Fleming I (1996) Endothelial dysfunction in atherosclerosis. J Vasc Res 33:181–194

    PubMed  CAS  Google Scholar 

  • Cattaruzza M, Hecker M (2008) Protein carbonylation and decarboylation: a new twist to the complex response of vascular cells to oxidative stress. Circ Res 102:273–274

    PubMed  CAS  Google Scholar 

  • Cattaruzza M, Berger MM, Ochs M, Fayyazi A, Füzesi L, Richter J, Hecker M (2002a) Deformation-induced endothelin B receptor-mediated smooth muscle cell apoptosis is matrix-dependent. Cell Death Differ 9:219–226

    PubMed  CAS  Google Scholar 

  • Cattaruzza M, Schäfer K, Hecker M (2002b) Cytokine-induced down-regulation of zfm1/splicing factor-1 promotes smooth muscle cell proliferation. J Biol Chem 277:6582–6589

    PubMed  CAS  Google Scholar 

  • Cattaruzza M, Słodowski W, Stojakovic M, Krzesz R, Hecker M (2003) Interleukin-10 induction of nitric-oxide synthase expression attenuates CD40-mediated interleukin-12 synthesis in human endothelial cells. J Biol Chem 278:37874–37880

    PubMed  CAS  Google Scholar 

  • Cattaruzza M, Guzik TJ, Słodowski W, Pelvan A, Becker J, Halle M, Buchwald AB, Channon KM, Hecker M (2004a) Shear stress insensitivity of endothelial nitric oxide synthase expression as a genetic risk factor for coronary heart disease. Circ Res 95:841–847

    PubMed  CAS  Google Scholar 

  • Cattaruzza M, Lattrich C, Hecker M (2004b) Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension 43:726–730

    PubMed  CAS  Google Scholar 

  • Chen Z, Rubin J, Tzima E (2010) Role of PECAM-1 in arteriogenesis and specification of preexisting collaterals. Circ Res 107:1355–1363

    PubMed  CAS  Google Scholar 

  • Cheng JJ, Wung BS, Chao YJ, Wang DL (1998) Cyclic strain-induced reactive oxygen species involved in ICAM-1 gene induction in endothelial cells. Hypertension 31:125–130

    PubMed  CAS  Google Scholar 

  • Cheng JJ, Wung BS, Chao YJ, Wang DL (2001) Sequential activation of protein kinase C (PKC)-α and PKC- ε contributes to sustained Raf/ERK1/2 activation in endothelial cells under mechanical strain. J Biol Chem 276:31368–31375

    PubMed  CAS  Google Scholar 

  • Choi C, Sellak H, Brown FM, Lincoln TM 2010 cGMP-dependent protein kinase and the regulation of vascular smooth muscle cell gene expression: possible involvement of Elk-1 sumoylation. Am J Physiol Heart Circ Physiol 299:H1660–H1670

    PubMed  CAS  Google Scholar 

  • Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine-inducible enhancers. FASEB J 9:899–909

    PubMed  CAS  Google Scholar 

  • Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E, Haselmann U, Small JV, Schwarz US, Stelzer EH (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122:1665–1679

    PubMed  CAS  Google Scholar 

  • Colombo MG, Paradossi U, Andreassi MG, Botto N, Manfredi S, Masetti S, Biagini A, Clerico A (2003) Endothelial nitric oxide synthase gene polymorphisms and risk of coronary artery disease. Clin Chem 49:389–395

    PubMed  CAS  Google Scholar 

  • Crawford AW, Beckerle MC (1991) Purification and characterization of zyxin, an 82,000-dalton component of adherens junctions. J Biol Chem 266:5847–5853

    PubMed  CAS  Google Scholar 

  • Crawford AW, Michelsen JW, Beckerle MC (1992) An interaction between zyxin and α-actinin. J Cell Biol 116:1381–1393

    PubMed  CAS  Google Scholar 

  • Davies PF, Civelek M, Fang Y, Guerraty MA, Passerini AG (2010) Endothelial heterogeneity associated with regional athero-susceptibility and adaptation to disturbed blood flow in vivo. Semin Thromb Hemost 36:265–275

    PubMed  CAS  Google Scholar 

  • Davis B, Zou MH (2005) CD40 ligand-dependent tyrosine nitration of prostacyclin synthase in vivo. Circulation 112:2184–2192

    PubMed  CAS  Google Scholar 

  • Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG (2004) Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor κB binding. J Biol Chem 279:163–168

    PubMed  CAS  Google Scholar 

  • Deliri H, McNamara CA (2007) Nox 4 regulation of vascular smooth muscle cell differentiation marker gene expression. Arterioscler Thromb Vasc Biol 27:12–14

    PubMed  CAS  Google Scholar 

  • Demicheva E, Hecker M, Korff T (2008) Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis. Circ Res 103:477–484

    PubMed  CAS  Google Scholar 

  • Du W, Mills I, Sumpio BE (1995) Cyclic strain causes heterogeneous induction of transcription factors, AP-1, CRE binding protein and NF-κB, in endothelial cells: species and vascular bed diversity. J Biomech 28:1485–1491

    PubMed  CAS  Google Scholar 

  • Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, Parmacek MS (2003) Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol 23:2425–2437

    PubMed  CAS  Google Scholar 

  • Förstermann U, Kleinert H (1995) Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn Schmiedebergs Arch Pharmacol 352:351–364

    PubMed  Google Scholar 

  • Frangos SG, Knox R, Yano Y, Chen E, Di Luozzo G, Chen AH, Sumpio BE (2001) The integrin-mediated cyclic strain-induced signaling pathway in vascular endothelial cells. Endothelium 8:1–10

    PubMed  CAS  Google Scholar 

  • Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 112:1018–1031

    PubMed  CAS  Google Scholar 

  • Goettsch C, Goettsch W, Muller G, Seebach J, Schnittler HJ, Morawietz H (2009) Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Biochem Biophys Res Commun 380:355–360

    PubMed  CAS  Google Scholar 

  • Gopalakrishna R, Jaken S (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28:1349–1361

    PubMed  CAS  Google Scholar 

  • Guest TM, Vlastos G, Alameddine FM, Taylor WR (2006) Mechanoregulation of monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Antioxid Redox Signal 8:1461–1471

    PubMed  CAS  Google Scholar 

  • Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillari R, Channon KM (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105:1656–1662

    PubMed  CAS  Google Scholar 

  • Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerzsten RE, Edelman ER, Jain MK (2007) Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem 282:13769–13779

    PubMed  CAS  Google Scholar 

  • Hansen MD, Beckerle MC (2006) Opposing roles of zyxin/LPP ACTA repeats and the LIM domain region in cell-cell adhesion. J Biol Chem 281:16178–16188

    PubMed  CAS  Google Scholar 

  • Hastings NE, Simmers MB, McDonald OG, Wamhoff BR, Blackman BR (2007) Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am J Physiol Cell Physiol 293:C1824–C1833

    PubMed  CAS  Google Scholar 

  • Hay DC, Beers C, Cameron V, Thomson L, Flitney FW, Hay RT (2003) Activation of NF-κB nuclear transcription factor by flow in human endothelial cells. Biochim Biophys Acta 1642:33–44

    PubMed  CAS  Google Scholar 

  • Hecker M, Mülsch A, Bassenge E, Busse R (1993) Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am J Physiol 265:H828–H833

    PubMed  CAS  Google Scholar 

  • Hellstrand P, Albinsson S (2005) Stretch-dependent growth and differentiation in vascular smooth muscle: role of the actin cytoskeleton. Can J Physiol Pharmacol 83:869–875

    PubMed  CAS  Google Scholar 

  • Helmke BP, Davies PF (2002) The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann Biomed Eng 30:284–296

    PubMed  Google Scholar 

  • Hildebrandt A, Hecker M, Wagner AH (2009) Cyclic stretch-mediated tyrosine nitration of CD40 impairs CD40 ligand-stimulated IL12p40 expression in human endothelial cells. Acta Physiol 195:O529

    Google Scholar 

  • Hill-Eubanks DC, Gomez MF, Stevenson AS, Nelson MT (2003) NFAT regulation in smooth muscle. Trends Cardiovasc Med 13:56–62

    PubMed  CAS  Google Scholar 

  • Hirata H, Tatsumi H, Sokabe M (2008a) Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J Cell Sci 121:2795–2804

    PubMed  CAS  Google Scholar 

  • Hirata H, Tatsumi H, Sokabe M (2008b) Zyxin emerges as a key player in the mechanotransduction at cell adhesive structures. Commun Integr Biol 1:192–195

    PubMed  Google Scholar 

  • Hoffman LM, Jensen CC, Kloeker S, Wang CL, Yoshigi M, Beckerle MC (2006) Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling. J Cell Biol 172:771–782

    PubMed  CAS  Google Scholar 

  • Hojo Y, Saito Y, Tanimoto T, Hoefen RJ, Baines CP, Yamamoto K, Haendeler J, Asmis R, Berk BC (2002) Fluid shear stress attenuates hydrogen peroxide-induced c-Jun NH2-terminal kinase activation via a glutathione reductase-mediated mechanism. Circ Res 91:712–718

    PubMed  CAS  Google Scholar 

  • Howard AB, Alexander RW, Nerem RM, Griendling KK, Taylor WR (1997) Cyclic strain induces an oxidative stress in endothelial cells. Am J Physiol 272:C421–C427

    PubMed  CAS  Google Scholar 

  • Hsiai TK, Cho SK, Wong PK, Ing M, Salazar A, Sevanian A, Navab M, Demer LL, Ho CM (2003) Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J 17:1648–1657

    PubMed  CAS  Google Scholar 

  • Ishibashi M, Hiasa K, Zhao Q, Inoue S, Ohtani K, Kitamoto S, Tsuchihashi M, Sugaya T, Charo IF, Kura S, Tsuzuki T, Ishibashi T, Takeshita A, Egashira K (2004) Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ Res 94:1203–1210

    PubMed  CAS  Google Scholar 

  • Kanungo J, Pratt SJ, Marie H, Longmore GD (2000) Ajuba, a cytosolic LIM protein, shuttles into the nucleus and affects embryonal cell proliferation and fate decisions. Mol Biol Cell 11:3299–3313

    PubMed  CAS  Google Scholar 

  • Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    PubMed  CAS  Google Scholar 

  • Kato T, Muraski J, Chen Y, Tsujita Y, Wall J, Glembotski CC, Schaefer E, Beckerle M, Sussman MA (2005) Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J Clin Invest 115:2716–2730

    PubMed  CAS  Google Scholar 

  • Kawai-Kowase K, Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292:C59–C69

    PubMed  CAS  Google Scholar 

  • Kawashima S, Yokoyama M (2004) Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol 24:998–1005

    PubMed  CAS  Google Scholar 

  • Kelkenberg U, Wagner AH, Sarhaddar J, Hecker M, von der Leyen HE (2002) CCAAT/enhancer-binding protein decoy oligodeoxynucleotide inhibition of macrophage-rich vascular lesion formation in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 22:949–954

    PubMed  CAS  Google Scholar 

  • Kida T, Chuma H, Murata T, Yamawaki H, Matsumoto S, Hori M, Ozaki H (2010) Chronic treatment with PDGF-BB and endothelin-1 synergistically induces vascular hyperplasia and loss of contractility in organ-cultured rat tail artery. Atherosclerosis. [PMID: 21129745, Epub ahead of print]

    Google Scholar 

  • Kinlay S, Libby P, Ganz P (2001) Endothelial function and coronary artery disease. Curr Opin Lipidol 12:383–389

    PubMed  CAS  Google Scholar 

  • Klotz LO, Schroeder P, Sies H (2002) Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways. Free Radic Biol Med 33:737–743

    PubMed  CAS  Google Scholar 

  • Korff T, Aufgebauer K, Hecker M (2007) Cyclic stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-β1 response. Circulation 116:2288–2297

    PubMed  CAS  Google Scholar 

  • Korff T, Braun J, Pfaff D, Augustin HG, Hecker M (2008) Role of ephrinB2 expression in endothelial cells during arteriogenesis: Impact on smooth muscle cell migration and monocyte recruitment. Blood 112:73–81

    PubMed  CAS  Google Scholar 

  • Kumar A, Knox AJ, Boriek AM (2003) CCAAT/enhancer-binding protein and activator protein-1 transcription factors regulate the expression of interleukin-8 through the mitogen-activated protein kinase pathways in response to mechanical stretch of human airway smooth muscle cells. J Biol Chem 278:18868–18876

    PubMed  CAS  Google Scholar 

  • Kuwahara K, Kinoshita H, Kuwabara Y, Nakagawa Y, Usami S, Minami T, Yamada Y, Fujiwara M, Nakao K (2010) Myocardin-related transcription factor A is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol Cell Biol. 30:4134–4148

    PubMed  CAS  Google Scholar 

  • Laumonnier Y, Nadaud S, Agrapart M, Soubrier F (2000) Characterization of an upstream enhancer region in the promoter of the human endothelial nitric-oxide synthase gene. J Biol Chem 275:40732–40741

    PubMed  CAS  Google Scholar 

  • Lauth M, Wagner AH, Cattaruzza M, Orzechowski HD, Paul M, Hecker M (2000) Transcriptional control of deformation-induced preproendothelin-1 gene expression in endothelial cells. J Mol Med 78:441–450

    PubMed  CAS  Google Scholar 

  • Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259:381–392

    PubMed  CAS  Google Scholar 

  • Libby P (2007) Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 65:S140–S146

    PubMed  Google Scholar 

  • Lutgens E, Gorelik L, Daemen MJ, de Muinck ED, Grewal IS, Koteliansky VE, Flavell RA (1999) Requirement for CD154 in the progression of atherosclerosis. Nat Med 5:1313–1316

    PubMed  CAS  Google Scholar 

  • Macarthur H, Warner TD, Wood EG, Corder R, Vane JR (1994) Endothelin-1 release from endothelial cells in culture is elevated both acutely and chronically by short periods of mechanical stretch. Biochem Biophys Res Commun 200:395–400

    PubMed  CAS  Google Scholar 

  • McCubrey JA, Lahair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8:1775–1789

    PubMed  CAS  Google Scholar 

  • Melchers I, Blaschke S, Hecker M, Cattaruzza M (2006) The -786C/T single-nucleotide polymorphism in the promoter of the gene for endothelial nitric oxide synthase: insensitivity to physiologic stimuli as a risk factor for rheumatoid arthritis. Arthritis Rheum 54:3144–3151

    PubMed  CAS  Google Scholar 

  • Mohamed JS, Lopez MA, Boriek AM (2010) Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Chem 285:29336–29347

    PubMed  CAS  Google Scholar 

  • Molavi B, Mehta JL (2004) Oxidative stress in cardiovascular disease: molecular basis of its deleterious effects, its detection, and therapeutic considerations. Curr Opin Cardiol 19:488–493

    PubMed  Google Scholar 

  • Musunuru K, Kathiresan S (2010) Genetics of coronary artery disease. Annu Rev Genomics Hum Genet 11:91–108

    PubMed  CAS  Google Scholar 

  • Ngu H, Feng Y, Lu L, Oswald SJ, Longmore GD, Yin FC (2010) Effect of focal adhesion proteins on endothelial cell adhesion, motility and orientation response to cyclic strain. Ann Biomed Eng 38:208–222

    PubMed  Google Scholar 

  • Nilsson LM, Sun ZW, Nilsson J, Nordström I, Chen YW, Molkentin JD, Wide-Swensson D, Hellstrand P, Lydrup ML, Gomez MF (2006) Novel blocker of NFAT activation inhibits IL-6 production in human myometrial arteries and reduces vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol 292:C1167–C1178

    PubMed  Google Scholar 

  • Nix DA, Fradelizi J, Bockholt S, Menichi B, Louvard D, Friederich E, Beckerle MC (2001) Targeting of zyxin to sites of actin membrane interaction and to the nucleus. J Biol Chem 276:34759–34767

    PubMed  CAS  Google Scholar 

  • Pan S (2009) Molecular mechanisms responsible for the atheroprotective effects of laminar shear stress. Antioxid Redox Signal 11:1669–1682

    PubMed  CAS  Google Scholar 

  • Petit MM, Fradelizi J, Golsteyn RM, Ayoubi TA, Menichi B, Louvard D, Van de Ven WJ, Friederich E (2000) LPP, an actin cytoskeleton protein related to zyxin, harbors a nuclear export signal and transcriptional activation capacity. Mol Biol Cell 11:117–129

    PubMed  CAS  Google Scholar 

  • Phipps RP, Koumas L, Leung E, Reddy SY, Blieden T, Kaufman J (2001) The CD40-CD40 ligand system: a potential therapeutic target in atherosclerosis. Curr Opin Investig Drugs 2:773–777

    PubMed  CAS  Google Scholar 

  • Porreca E, Di Febbo C, Reale M, Castellani ML, Baccante G, Barbacane R, Conti P, Cuccurullo F, Poggi A (1997) Monocyte chemotactic protein 1 (MCP-1) is a mitogen for cultured rat vascular smooth muscle cells. J Vasc Res 34:58–65

    PubMed  CAS  Google Scholar 

  • Reinhard M, Jouvenal K, Tripier D, Walter U (1995) Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein. Proc Natl Acad Sci USA 92:7956–7960

    PubMed  CAS  Google Scholar 

  • Reinhard M, Zumbrunn J, Jaquemar D, Kuhn M, Walter U, Trueb B (1999) An α-actinin binding site of zyxin is essential for subcellular zyxin localization and α-actinin recruitment. J Biol Chem 274:13410–13418

    PubMed  CAS  Google Scholar 

  • Rossi GP, Taddei S, Virdis A, Cavallin M, Ghiadoni L, Favilla S, Versari D, Sudano I, Pessina AC, Salvetti A (2003) The T-786C and Glu298Asp polymorphisms of the endothelial nitric oxide gene affect the forearm blood flow responses of Caucasian hypertensive patients. J Am Coll Cardiol 41:938–945

    PubMed  CAS  Google Scholar 

  • Schaper W (2009) Collateral circulation: past and present. Basic Res Cardiol 104:5–21

    PubMed  CAS  Google Scholar 

  • Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 23:1143–1151

    PubMed  CAS  Google Scholar 

  • Schepers A, Eefting D, Bonta PI, Grimbergen JM, de Vries MR, van Weel V, de Vries CJ, Egashira K, van Bockel JH, Quax PH (2006) Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells proliferation and attenuates vein graft thickening both in vitro and in vivo. Arterioscler Thromb Vasc Biol 26:2063–2069

    PubMed  CAS  Google Scholar 

  • Schlossmann J, Desch M (2009) cGK substrates. Handb Exp Pharmacol 191:163–193

    PubMed  CAS  Google Scholar 

  • Schwartz RS, Chronos NA, Virmani R (2004) Preclinical restenosis models and drug-eluting stents: still important, still much to learn. J Am Coll Cardiol 44:1373–1385

    PubMed  CAS  Google Scholar 

  • Scott DW, Loo G (2007) Curcumin-induced GADD153 upregulation: modulation by glutathione. J Cell Biochem 101:307–320

    PubMed  CAS  Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    PubMed  CAS  Google Scholar 

  • SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA Jr, García-Cardeña G, Jain MK (2004) KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315

    PubMed  CAS  Google Scholar 

  • Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74:349–353

    PubMed  CAS  Google Scholar 

  • Sharma GD, Nguyen HT, Antonov AS, Gerrity RG, von Geldern T, Pandey KN (2002) Expression of atrial natriuretic peptide receptor-A antagonizes the mitogen-activated protein kinases (Erk2 and P38MAPK) in cultured human vascular smooth muscle cells. Mol Cell Biochem 233:165–173

    PubMed  CAS  Google Scholar 

  • Sharma SK, Sweeny J, Kini AS (2010) Coronary bifurcation lesions: a current update. Cardiol Clin 28:55–70

    PubMed  Google Scholar 

  • Silacci P, Formentin K, Bouzourène K, Daniel F, Brunner HR, Hayoz D (2000) Unidirectional and oscillatory shear stress differentially modulate NOS III gene expression. Nitric Oxide 4:47–56

    PubMed  CAS  Google Scholar 

  • Silacci P, Desgeorges A, Mazzolai L, Chambaz C, Hayoz D (2001) Flow pulsatility is a critical determinant of oxidative stress in endothelial cells. Hypertension 38:1162–1166

    PubMed  CAS  Google Scholar 

  • Souza JM, Choi I, Chen Q, Weisse M, Daikhin E, Yudkoff M, Obin M, Ara J, Horwitz J, Ischiropoulos H (2000) Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys 380:360–366

    PubMed  CAS  Google Scholar 

  • Tedgui A, Mallat Z (2001) Anti-inflammatory mechanisms in the vascular wall. Circ Res 88:877–887

    PubMed  CAS  Google Scholar 

  • Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG (1995) Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 269:C1371–C1378

    PubMed  CAS  Google Scholar 

  • van Halm VP, Peters MJ, Voskuyl AE, Boers M, Lems WF, Visser M, Stehouwer CD, Spijkerman AM, Dekker JM, Nijpels G, Heine RJ, Bouter LM, Smulders YM, Dijkmans BA, Nurmohamed MT (2009) Rheumatoid arthritis versus diabetes as a risk factor for cardiovascular disease: a cross-sectional study, the CARRE Investigation. Ann Rheum Dis 68:1395–1400

    PubMed  Google Scholar 

  • Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–219

    PubMed  CAS  Google Scholar 

  • Wagner AH, Schroeter MR, Hecker M (2001) 17β-Estradiol inhibition of NADPH oxidase expression in human endothelial cells. FASEB J 15:2121–2130

    PubMed  CAS  Google Scholar 

  • Wagner AH, Kautz O, Fricke K, Zerr-Fouineau M, Demicheva E, Güldenzoph B, Bermejo JL, Korff T, Hecker M (2009) Upregulation of glutathione peroxidase offsets stretch-induced proatherogenic gene expression in human endothelial cells. Arterioscler Thromb Vasc Biol 29:1894–1901

    PubMed  CAS  Google Scholar 

  • Wang DS, Proffit D, Tsao PS (2001) Mechanotransduction of endothelial oxidative stress induced by cyclic strain. Endothelium 8:283–291

    PubMed  CAS  Google Scholar 

  • Wang Y, Gilmore TD (2003) Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochim Biophys Acta 1593:115–120

    PubMed  CAS  Google Scholar 

  • Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN (2004) Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428:185–189

    PubMed  CAS  Google Scholar 

  • Weber M, Baker MB, Moore JP, Searles CD (2010) MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 393:643–648

    PubMed  CAS  Google Scholar 

  • Wójtowicz A, Babu SS, Li L, Gretz N, Hecker M, Cattaruzza M (2010) Zyxin mediation of stretch-induced gene expression in human endothelial cells. Circ Res 107:898–902

    PubMed  Google Scholar 

  • Won D, Zhu SN, Chen M, Teichert AM, Fish JE, Matouk CC, Bonert M, Ojha M, Marsden PA, Cybulsky MI (2007) Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. Am J Pathol 171:1691–1704

    PubMed  CAS  Google Scholar 

  • Wung BS, Cheng JJ, Hsieh HJ, Shyy YJ, Wang DL (1997) Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ Res 81:1–7

    PubMed  CAS  Google Scholar 

  • Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN (2009) MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 23:2166–2178

    PubMed  CAS  Google Scholar 

  • Yoshida T, Sinha S, Dandré F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang DZ, Olson EN, Owens GK (2003) Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circ Res 92:856–864

    PubMed  CAS  Google Scholar 

  • Yoshigi M, Hoffman LM, Jensen CC, Yost HJ, Beckerle MC (2005) Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J Cell Biol 171:209–215

    PubMed  CAS  Google Scholar 

  • Yue TL, Wang X, Sung CP, Olson B, McKenna PJ, Gu JL, Feuerstein GZ (1994) Interleukin-8. A mitogen and chemoattractant for vascular smooth muscle cells. Circ Res 75:1–7

    PubMed  CAS  Google Scholar 

  • Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R (1995) Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 76:980–986

    PubMed  CAS  Google Scholar 

  • Zhang D, Childs G (1998b) Human ZFM1 protein is a transcriptional repressor that interacts with the transcription activation domain of stage-specific activator protein. J Biol Chem 273:6868–6877

    PubMed  CAS  Google Scholar 

  • Zhang D, Paley AJ, Childs G (1998a) The transcriptional repressor ZFM1 interacts with and modulates the ability of EWS to activate transcription. J Biol Chem 273:18086–18091

    PubMed  CAS  Google Scholar 

  • Zhao S, Suciu A, Ziegler T, Moore JEJR, Burki E, Meister JJ, Brunner HR (1995) Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler Thromb Vasc Biol 15:1781–1786

    PubMed  CAS  Google Scholar 

  • Ziegler T, Silacci P, Harrison VJ, Hayoz D (1998) Nitric oxide synthase expression in endothelial cells exposed to mechanical forces. Hypertension 32:351–355

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors work is supported by the German Research Foundation (DFG), the Federal Ministry of Research and Education (BMBF), the European Commission and the German Cardiac Society (DGK). We are indebted to Dr. Gerd König for the making of the figures and critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cattaruzza, M., Wagner, A.H., Hecker, M. (2012). Mechanosensitive Pro-inflammatory Gene Expression in Vascular Cells. In: Kamkin, A., Kiseleva, I. (eds) Mechanical Stretch and Cytokines. Mechanosensitivity in Cells and Tissues, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2004-6_3

Download citation

Publish with us

Policies and ethics