Skip to main content

Mechanical Stretching of Cells of Different Tissues: The Role of Mediators of Innate Immunity

  • Chapter
  • First Online:
Mechanical Stretch and Cytokines

Abstract

The current review describes the modern conce of how the mechanical stretch (MS) affects cytokine and chemokine production by the cells of different tissues (cardiomyocytes, fibroblasts, smooth muscle cells, endothelial cells and pulmonary cells). Released mediators regulate cell functions such as synthesis of the extracellular matrix proteins, proliferation, apoptosis and others, in autocrine or paracrine manner. Endogenous cytokines (tumor necrosis factor α (TNFα), insulin-like growth factor 1 (IGF-1), vascular endothelial growth factor (VEGF), interleukin 6 (IL-6) and others) produced in myocardium in response to mechanical stretch (MS) may trigger pathological processes resulting in myocyte growth, apotosis and formation of reactive fibrosis. Mechanical load is associated with increase in tissue volume and tissue remodeling. This review provides data about changes in expression of cytokine receptors expression, as well as receptors of innate immunity (TLRs), in response to MS. TLR4 is expressed on the surface of cells of the heart, including cardiomyocytes, smooth muscle cells and endothelial cells. Cyclic MS enhances expression of TLR4 in cultured neonatal rat cardiomyocytes. Excessive MS may result in alterations of cell structure and functions, composition of extracellular matrix (ECM), and promote development of pathological conditions such as hypertrophy, fibrosis, atherosclerosis, osteoporosis, etc. Searching for drugs with targeted action working at the extracellular, membrane and intracellular levels and which will improve the consequences of excessive MS is of undoubted interest and is actual for the treatment of many human pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S, Deschner J, Long P, Verma A, Hofman C, Evans CH, Piesco N (2004) Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum 50:3541–3548

    Article  PubMed  CAS  Google Scholar 

  • Albinsson S, Hellstrand P (2007) Integration of signal pathways for stretch-dependent growth and differentiation in vascular smooth muscle cell. Am J Physiol 293:C772–C782

    Article  CAS  Google Scholar 

  • Ali MH, Schumacker PT (2002) Endothelial responses to mechanical stress Where is the mechanosensor? Crit Care Med 30:S198–S206

    Article  PubMed  CAS  Google Scholar 

  • Al-Lamki RS, Brookes AP, Wang J, Reid MJ, Parameshwar J, Goddard MJ, Tellides G, Wan T, Min W, Pober JS, Bradley JR (2009) TNF receptors differentially signal and are differentially expressed and regulated in the human heart. Am J Transplant 9:2679–2696

    Article  PubMed  CAS  Google Scholar 

  • Andersson M, Karisson L, Svensson PA, Ulfhammer E, Ekman M, Jernås M, Carlsson LM, Jern S (2005) Differential global gene expression response patterns of human endothelium exposed to shear stress and intraluminal pressure. J Vasc Res 42:441–452

    Article  PubMed  CAS  Google Scholar 

  • Armant MA, Fenton MJ (2002) Toll-like receptors family of pattern-recognition receptors in mammals. Genome Biol 3(8):3011.1–3011.6

    Article  Google Scholar 

  • Awolesi MA, Sessa WC, Sumpio BE (1995) Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest 96:1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Banerjee I, Fuseler JW, Intwala AR, Baudino TA (2009) IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol 296:H1694–H1704

    Article  PubMed  CAS  Google Scholar 

  • Banes AJ, Tsuzaki M, Hu P, Brigman B, Brown T, Almekinders L, Lawrence WT, Fischer T (1995) PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J Biomech 28(12):1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Birukov KG (2005) Regulation of vascular endothelial cell signal transduction and phenotype by mechanical factors. In: Shepro D (ed) Microvascular research: biology and pathology. Academic, San Diego, CA, pp 209–215

    Google Scholar 

  • Birukov KG, Jacobson JR, Flores AA, Ye SQ, Birukova AA, Verin AD, Garcia JG (2003) Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am J Physiol 285:L785–L797

    CAS  Google Scholar 

  • Bishop JE, Butt R, Dawes K, Laurent G (1998) Mechanical load enhances the stimulatory effect of PDGF on pulmonary artery fibroblast procollagen synthesis. Chest 114(Suppl 1):25S

    Article  PubMed  CAS  Google Scholar 

  • Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR (2006) Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-κB dependent inflammatory response. Cardiovasc Res 72:384–393

    Article  PubMed  CAS  Google Scholar 

  • Butt RP, Bishop JE (1997) Mechanical load enhances the stimulatory effect of serum growth factors on cardiac fibroblast procollagen synthesis. J Mol Cell Cardiol 29(4):1141–1151

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Shyu KG, Wang BW, Kuan P (2003) Regulation of hypoxia-inducible factor-1a by cyclical mechanical stretch in rat vascular smooth muscle cells. Clin Sci 105:447–456

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Huang J, Gong W, Iribarren P, Dunlop NM, Wang JM (2007) Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol 7(10):1271–1285

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Du J (2007) Mechanical stretch stimulates proliferation of venous smooth muscle cells throgh activation of the insulin-like growth factor-1 receptor. Arterioscler Thromb Vasc Res 27:1744–1751

    Article  CAS  Google Scholar 

  • Cheng JJ, Wung BS, Chao YJ, Wang DL (1996) Cyclic strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression. Hypertension 28(3):386–391

    PubMed  CAS  Google Scholar 

  • Cheng WP, Hung HF, Wang BW, Shyu KG (2008) The molecular regulation of GADD153 in apoptosis of cultured vascular smooth muscle cells by cyclic mechanical stretch. Cardiovasc Res 77:551–559

    Article  PubMed  CAS  Google Scholar 

  • Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol 292:H1209–H1224

    CAS  Google Scholar 

  • Cohen CR, Mills I, Du W, Kamal K, Sumpio BE (1997) Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain. Exp Cell Res 231(1):184–189

    Article  PubMed  CAS  Google Scholar 

  • Csiszar A, Ahmad M, Smith KE, Labinskyy N, Gao Q, Kaley G, Edwards JG, Wolin MS, Ungvari Z (2006) Bone morphogenetic protein-2 induces proinflammatory endothelial phenotype. Am J Pathol 168:629–638

    Article  PubMed  CAS  Google Scholar 

  • Csiszar A, Labinskyy N, Smith KE et al (2007) Downregulation of bone morphogenetic protein 4 expression in coronary arterial endothelial cells: role of shear stress and the cAMP/protein kinase A pathway. Arterioscler Thromb Vasc Biol 27:776–782

    Article  PubMed  CAS  Google Scholar 

  • Cummins PM, Sweeney NO, Killeen MT, Birney YA, Redmond EM, Cahill PA (2007) Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am J Physiol 292:H28–H42

    CAS  Google Scholar 

  • Dai G, Vaughn S, Zhang Y, Wang ET, Garcia-Cardena G, Gimbrone MA (2007) Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositiol 3-kinase/Akt-dependnet activation of Nrf2. Circ Res 101:723–733

    Article  PubMed  CAS  Google Scholar 

  • Das P, Schurman DJ, Smith RL (1997) Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. J Orth Res 15:87–93

    Article  CAS  Google Scholar 

  • Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560

    PubMed  CAS  Google Scholar 

  • Deschner J, Rath-Deschner B, Agarwal S (2006) Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthritis Cartilage 14:264–272

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89:1645–2084

    PubMed  CAS  Google Scholar 

  • Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  • Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F (2002) Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthritis Cartilage 10:792–798

    Article  PubMed  CAS  Google Scholar 

  • Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253

    Article  PubMed  CAS  Google Scholar 

  • Frank D, Kuhn C, Brors B, Hanselmann C, Lüdde M, Katus HA, Frey N (2008) Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension 51:309–318

    Article  PubMed  CAS  Google Scholar 

  • Frantz S, Ertl G, Bauersachs J (2007) Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med 4(8):444–454

    Article  PubMed  CAS  Google Scholar 

  • Gassner R, Buckley MJ, Georgescu H, Studer R, Stefanovich-Racic M, Piesco NP, Evans CH, Agarwal S (1999) Cyclic tensile stress exerts antiinflammatory actions on chondrocytes by inhibiting inducible nitric oxide synthase. J Immunol 163:2187–2192

    PubMed  CAS  Google Scholar 

  • Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M et al (2002) Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 168:5989–5992

    PubMed  CAS  Google Scholar 

  • Haga JH, Li YS, Chien S (2007) Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech 40:947–960

    Article  PubMed  Google Scholar 

  • Harrison DG, Widder J, Grumbach I, Chen W, Webber M, Searles C (2006) Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Int Med 259:351–363

    Article  CAS  Google Scholar 

  • Hirota H, Yoshida K, Kishimoto T, Taga T (1995) Continuous activation of gp130, a signal-transducing receptor component for IL-6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 92:4862–4866

    Article  PubMed  CAS  Google Scholar 

  • Hsieh HJ, Li NQ, Frangos JA (1991) Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am J Physiol 260(2 Pt 2):H642–H646

    PubMed  CAS  Google Scholar 

  • Huddleson JP, Ahmad N, Lingrel JB (2006) Up-regulation of the KLF2 transcription factor by fluid shear stress requires nucleolin. J Biol Chem 281(22):15121–15128

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Kawano T, Iwamoto S, Nakagawa S, Takata M, Miyasaka K (1999) Intratracheal anti-tumor necrosis factor-α antibody attenuates ventilator-induced lung injury in rabbits. J Appl Physiol 87:510–515

    PubMed  CAS  Google Scholar 

  • Ingber DE (1997) Tensegrity: The architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    Article  PubMed  CAS  Google Scholar 

  • Joki N, Kaname S, Hirakata M, Hori Y, Yamaguchi T, Fujita T, Katoh T, Kurokawa K (2000) Tyrosine-kinase dependent TGF-beta and extracellular matrix expression by mechanical stretch in vascular smooth muscle cells. Hypertens Res – Clin Exp 23(2):91–99

    Article  CAS  Google Scholar 

  • Joos H, Albrecht W, Laufer S, Reichel H, Brenner RE (2008) IL-1beta regulates FHL2 and other cytoskeleton-related genes in human chondrocytes. Mol Med 14:150–159

    Article  PubMed  CAS  Google Scholar 

  • Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585

    Article  PubMed  CAS  Google Scholar 

  • Kakisis JD, Liapis CD, Sumpio BE (2004) Effects of cyclic strain on vascular cells. Endothelium 11:17–28

    Article  PubMed  CAS  Google Scholar 

  • Kaser S, Kaser A, Sandhofer A, Ebenbichler CF, Tilg H, Patsch JR (2003) Resistin messenger-RNA expression is increased by proinflammatory cytokine in vitro. Biochem Biophys Res Commun 309:286–290

    Article  PubMed  CAS  Google Scholar 

  • Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279:12001–12004

    Article  PubMed  CAS  Google Scholar 

  • Khachigian LM, Anderson KR, Halnon NJ, Gimbrone MA Jr, Resnick N, Collins T (1997) Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter. Arterioscler Thromb Vasc Biol 17(10):2280–2286

    Article  PubMed  CAS  Google Scholar 

  • Kinderlerer AR, Ali F, Johns M, Lidington EA, Leung V, Boyle JJ, Hamdulay SS, Evans PC, Haskard DO, Mason JC (2008) KLF-dependent, shear stress-induced expression of CD59: a novel cytoprotective mechanism against complement-mediated injury in the vasculature. J Biol Chem 283:14636–14644

    Article  PubMed  CAS  Google Scholar 

  • Korenaga R, Yamamoto K, Ohura N, Sokabe T, Kamiya A, Ando J (2001) Sp1-mediated downregulation of P2X4 receptor gene transcription in endothelial cells exposed to shear stress. Am J Physiol 280(5):H2214–H2221

    CAS  Google Scholar 

  • Kosaki K, Ando J, Korenaga R, Kurokawa T, Kamiya A (1998) Fluid shear stress increases the production of granulocyte-macrophage colony-stimulating factor by endothelial cells via mRNA stabilization. Circ Res 82(7):794–802

    PubMed  CAS  Google Scholar 

  • Kouri FM, Eickelberg O (2006) Transforming growth factor-alpha, a novel mediator of strain-induced vascular remodeling. Circ Res 99(4):348–350

    Article  PubMed  CAS  Google Scholar 

  • Koval’chuk LV, Khoreva MV, Varivoda AS, Konstantinova EV, Iudin AA, Mastakova II (2008) Role of innate immunity receptors in development of acute myocardial infarction. Zh Mikrobiol Epidemiol Immunobiol 4:64–68

    PubMed  Google Scholar 

  • Laurindo FR, Pedro Mde A, Barbeiro HV, Pileggi F, Carvalho MH, Augusto O, da Luz PL (1994) Vascular free radical release. Ex vivo and in vivo evidence for a flow-dependent endothelial mechanism. Circ Res 74(4):700–709

    PubMed  CAS  Google Scholar 

  • Lee AA, Delhaas T, McCulloch AD, Villarreal FJ (1999) Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31(10):1833–1843

    Article  PubMed  CAS  Google Scholar 

  • Lehoux S (2006) Redox signaling in vascular responses to shear and stretch. Cardiovasc Res 71:269–279

    Article  PubMed  CAS  Google Scholar 

  • Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanism of the vascular response to haemodynamic forces. J Int Med 259:381–392

    Article  CAS  Google Scholar 

  • Lemarie CA, Tharaux P, Esposito B, Tedgui A, Lehoux S (2006) Transforming growth factor-a mediates nuclear factor kb activation in strained arteries. Circ Res 99:434–441

    Article  PubMed  CAS  Google Scholar 

  • Li H, Sun B (2007) Toll-like receptor 4 in atherosclerosis. J Cell Mol Med 11(1):88–95

    Article  PubMed  CAS  Google Scholar 

  • Li C, Xu Q (2007) Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal 19:881–891

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Muragaki Y, Hatamura I, Ueno H, Ooshima A (1998) Stretchinduced collagen synthesis in cultured smoothmuscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-beta. J Vasc Res 35(2):93–103

    Article  PubMed  CAS  Google Scholar 

  • Li C, Hu Y, Sturm G, Wick G, Xu Q (2000) Ras/Rac-Dependent activation of p38 mitogen-activated protein kinases in smooth muscle cells stimulated by cyclic strain stress. Arterioscler Thromb Vasc Biol 20(3):E1–9

    Article  PubMed  CAS  Google Scholar 

  • Liang F, Gardner DG (1999) Mechanical strain activates BNP gene transcription through a p38/NF-KB-dependent mechanism. J Clin Invest 104:1603–1612

    Article  PubMed  CAS  Google Scholar 

  • Lin MC, Almus-Jacobs F, Chen HH, Parry GC, Mackman N, Shyy JY, Chien S (1997) Shear stress induction of the tissue factor gene. J Clin Invest 99:737–744

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Slutsky AS (1997) Anti-inflammatory therapies: application of molecular biology techniques in intensive care medicine. Intensive Care Med 23:718–731

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Tanswell AK, Post M (1999) Mechanical force-induced signal transduction in lung cells. Am J Physiol 277:L667–L683

    PubMed  CAS  Google Scholar 

  • Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    Article  PubMed  CAS  Google Scholar 

  • MacKena D, Summerour SR, Villarreal FJ (2000) Role of mechanical factors in modulating fibroblast function and extracellular matrix synthesis. Card Res 46:257–263

    Article  Google Scholar 

  • Malek AM, Gibbons GH, Dzau VJ, Izumo S (1993) Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium. J Clin Invest 92(4):2013–2021

    Article  PubMed  CAS  Google Scholar 

  • Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94(3):849–854

    Article  PubMed  CAS  Google Scholar 

  • Mathy-Hartert MBS, Sanchez C, Lambert C, Henrotin Y (2008) L’application de forces cycliques d’étirement diminue la production de médiateurs de l’inflammation par les chondrocytes arthrosiques. Rev Rhum 75:999–1000

    Google Scholar 

  • McNicholas-Bevensee CM, DeAndrade KB, Bradley WE, Dell’Italia LJ, Lucchesi PA, Bevensee MO (2006) Activation of gadolinium-sensitive ion channels in cardiomyocytes in early adaptive stages of volume overload-induced heart failure. Cardiovasc Res 72:262–270

    Article  PubMed  CAS  Google Scholar 

  • Misch EA, Hawn TR (2008) Toll-like receptor polymorphism and susceptibility to human disease. Clin Sci 114:347–360

    Article  PubMed  Google Scholar 

  • Mitsumata M, Fishel RS, Nerem RM, Alexander RW, Berk BC (1993) Fluid shear stress stimulates platelet-derived growth factor expression in endothelial cells. Am J Physiol 265(1 Pt 2):H3–H8

    Google Scholar 

  • Mohtai M, Gupta MK, Donlon B, Ellison B, Cooke J, Gibbons G, Schurman DJ, Smith RL (1996) Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. J Orth Res 14:67–73

    Article  CAS  Google Scholar 

  • Morita T, Yoshizumi M, Kurihara H, Maemura K, Nagai R, Yazaki Y (1993) Shear stress increases heparin-binding epidermal growth factor-like growth factor mRNA levels in human vascular endothelial cells. Biochem Biophys Res Commun 197(1):256–262

    Article  PubMed  CAS  Google Scholar 

  • Mourgeon E, Isowa N, Keshavjee S, Zhang X, Slutsky AS, Liu M (2000) Mechanical stretch stimulates macrophage inflammatory protein-2 secretion from fetal rat lung cells. Am J Physiol 279:L699–L706

    CAS  Google Scholar 

  • Mowbray AL, Kang DH, Rhee SG, Kang SW, Jo H (2008) Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells: PRX 1 as a mechanosensitive antioxidant. J Biol Chem 283(3):1622–1627

    Article  PubMed  CAS  Google Scholar 

  • Naka T, Sakoda T, Doi T, Akagami T, Tsujino T, Masuyama T, Ohyanagi M (2008) Mechanical stretch induced interleukin-18 (IL-18) expression through angiotensin subtype 1 receptor (AT1R) and endothelin 1 in cardiomyocytes. Prep Biochem Biotechnol 38:201–212

    Article  PubMed  CAS  Google Scholar 

  • Narimanbekov IO, Rozycki HJ (1995) Effect of IL-1 blockade on inflammatory manifestations of acute ventilator-induced lung injury in a rabbit model. Exp Lung Res 21:239–254

    Article  PubMed  CAS  Google Scholar 

  • Naruse K, Sokabe M (1993) Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol 264(4 Pt 1):C1037–C1044

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Inoue T, Morooka T, Node K (2008) Mechanical stretch and angiotensin II increase interleukin-13 production and interleukin-13 receptor 2 expression in rat neonatal cardiomyocytes. Circulation 72:647–653

    CAS  Google Scholar 

  • Ohno M, Cooke JP, Dzau VJ, Gibbons GH (1995) Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 95(3):1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Ohura N, Yamamoto K, Ichioka S, Sokabe T, Nakatsuka H, Baba A, Shibata M, Nakatsuka T, Harii K, Wada Y, Kohro T, Kodama T, Ando J (2003) Global analysis of shear stress-responsive genes in vascular endothelial cells. J Atheroscler Thromb 10:304–313

    Article  PubMed  CAS  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  PubMed  CAS  Google Scholar 

  • Otani H, Matsuhisa S, Akita Y, Kyoi S, Enoki C, Tatsumi K, Fujiwara H, Hattori R, Imamura H, Iwasaka T (2006) Role of mechanical stress in the form of cardiomyocyte death during the early phase of reperfusion. Circulation 70:1344–1355

    Article  CAS  Google Scholar 

  • Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, Baker KM (2005) PKC medicates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 202:536–553

    Article  PubMed  CAS  Google Scholar 

  • Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nermer M (2000) Overexpression of angiotensin II type 1 receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA 97:931–936

    Article  PubMed  CAS  Google Scholar 

  • Paravicini TM, Touyz RM (2006) Redox signaling in hypertension. Cardiovasc Res 71:247–258

    Article  PubMed  CAS  Google Scholar 

  • Pickvance EA, Oegema TR Jr, Thompson RC Jr (1993) Immunolocalization of selected cytokines and proteases in canine articular cartilage after transarticular loading. J Orth Res 11:313–323

    Article  CAS  Google Scholar 

  • Pimenteal RC, Yamada KA, Kleber AG, Saffitz JE (2002) Autocrine regulation of myocyte Cx43 expression by VEGF. Circ Res 90:671–677

    Article  Google Scholar 

  • Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, Baliga R, Wang J, Siwik DA, Singh K, Pagano P, Colucci WS, Sawyer DB (2001) Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89:453–460

    Article  PubMed  CAS  Google Scholar 

  • Pritchard S, Guilak F (2006) Effects of interleukin-1 on calcium signaling and the increase of filamentous actin in isolated and in situ articular chondrocytes. Arthritis Rheum 54:2164–2174

    Article  PubMed  CAS  Google Scholar 

  • Pugin J, Dunn I, Jolliet P, Tassaux D, Magnenat JL, Nicod LP, Chevrolet JC (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275:L1040–L1050

    PubMed  CAS  Google Scholar 

  • Ricard JD, Dreyfuss D, Saumon G (2001) Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 163:1176–1180

    PubMed  CAS  Google Scholar 

  • Rosales OR, Sumpio BE (1992) Changes in cyclic strain increase inositol trisphosphate and diacylglycerol in endothelial cells. Am J Physiol 262(4 Pt 1):C956–C962

    PubMed  CAS  Google Scholar 

  • Ruiz C, Pérez E, García-Martínez O, Díaz-Rodríguez L, Arroyo-Morales M, Reyes-Botella C (2007) Expression of cytokines IL-4, IL-12, IL-15, IL-18, and IFNgamma and modulation by different growth factors in cultured human osteoblast-like cells. J Bone Miner Metab 25(5):286–292

    Article  PubMed  CAS  Google Scholar 

  • Ruwhof C, van Wamel AET, Egas JM, van der Laarse A (2000) Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol Cell Biochem 208:89–98

    Article  PubMed  CAS  Google Scholar 

  • Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 12:168–192

    Google Scholar 

  • Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    Article  PubMed  CAS  Google Scholar 

  • Salter DM, Millward-Sadler SJ, Nuki G, Wright MO (2002) Differential responses of chondrocytes from normal and osteoarthritic human articular cartilage to mechanical stimulation. Biorheology 39:97–108

    PubMed  CAS  Google Scholar 

  • Sanchez Ch, Mathy-Hartert M, Henrotin Y (2011) The mechanosensitivity of cells in joint tissues: role in the pathogenesis of joint diseases. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues 4. Mechanosensitivity and Mechanotransduction. Springer, New York, NY, pp 297–313

    Google Scholar 

  • Sandor F, Buc M (2005) Toll-like receptors. I. Structure, function and their ligands. Folia Biologica (Praha) 51:148–156

    CAS  Google Scholar 

  • Saygili E, Rana OR, Saygili E, Reuter H, Frank K, Schwinger RH, Müller-Ehmsen J, Zobel C (2007) Losartan prevents stretch-induced electrical remodeling in cultured atrial neonatal myocytes. Am J Physiol 292:H2898–H2905

    CAS  Google Scholar 

  • Shyu KG (2009) Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin Sci 116:377–389

    Article  PubMed  CAS  Google Scholar 

  • Shyu KG, Chen JJ, Shih NL, Wang DL, Chang H, Lien WP, Liew CC (1995) Regulation of human cardiac myosin heavy chain genes by cyclical mechanical stretch in cultured cardiocytes. Biochem Biophys Res Commun 210:567–573

    Article  PubMed  CAS  Google Scholar 

  • Shyu KG, Ko WH, Yang WS, Wang BW, Kuan P (2005a) Insulin-like growth factor-1 mediates stretch-induced upregulation of myostatin expression in neonatal rat cardiomyocytes. Cardiovasc Res 68:405–414

    Article  PubMed  CAS  Google Scholar 

  • Shyu KG, Chao YM, Wang BW, Kuan P (2005b) Regulation of discoidin domain receptor 2 by cyclic mechanical stretch in cultured rat vascular smooth muscle cells. Hypertension 46(3):614–621

    Article  PubMed  CAS  Google Scholar 

  • Shyu KG, Wang BW, Lin CM, Chang H (2010) Cyclic stretch enhances the expression of Toll-like receptor 4 gene in cultured cardiomyocytes via p38 MAP kinase and NF-κB pathway. J Biomed Sci 17:15

    Article  PubMed  CAS  Google Scholar 

  • Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769–775

    Article  PubMed  CAS  Google Scholar 

  • Shyy JY, Lin MC, Han J, Lu Y, Petrime M, Chien S (1995) The cis-acting phorbol ester “12-O-tetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci USA 92:8069–8073

    Article  PubMed  CAS  Google Scholar 

  • Simon BA (2001) Message in a model. Am J Respir Crit Care Med 163:1043–1044

    PubMed  CAS  Google Scholar 

  • Sitrin RG, Pan PM, Srikanth S, Todd RF 3rd (1998) Fibrinogen activates NF-κB transcription factors in mononuclear phagocytes. J Immunol 161:1462–1470

    PubMed  CAS  Google Scholar 

  • Skutek M, van Griensven M, Zeichen J, Brauer N, Bosch U (2001) Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur J Appl Physiol 86(1):48–52

    Article  PubMed  CAS  Google Scholar 

  • Sokabe T, Yamamoto K, Ohura N, Nakatsuka H, Qin K, Obi S, Kamiya A, Ando J (2004) Differential regulation of urokinase-type plasminogen activator expression by fluid shear stress in human coronary artery endothelial cells. Am J Physiol 287(5):H2027–H2034

    CAS  Google Scholar 

  • Standley PR, Obards TJ, Martina CI (1999) Cyclic stretch regulates autocrine IGF-1 in vascular smooth muscle cells: implications in vascular hyperplasia. Am J Physiol 39:E697–E705

    Google Scholar 

  • Sterpetti AV, Cucina A, Morena AR, Di Donna S, D’Angelo LS, Cavalarro A, Stipa S (1993) Shear stress increases the release of interleukin-1 and interleukin-6 by aortic endothelial cells. Surgery 114:911–914

    PubMed  CAS  Google Scholar 

  • Szabo-Fresnais N, Lefebvre F, Germain A, Fischmeister R, Pomérance M (2010) A new regulation of IL-6 production in adult cardiomyocytes by beta-adrenergic and IL-1 beta receptors and induction of cellular hypertrophy by IL-6 trans-signalling. Cell Signal 22(7):1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Takata M, Abe J, Tanaka H, Kitano Y, Doi S, Kohsaka T, Miyasaka K (1997) Intraalveolar expression of tumor necrosis factor- gene during conventional and high-frequency ventilation. Am J Respir Crit Care Med 156:272–279

    PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. International Immunol 17(1):1–14

    Article  CAS  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Saito M, Ueno A, Nakamura M, Takeishi K, Nakayama K (2000) Mechanical stretch augments PDGF receptor beta expression and protein tyrosine phosphorylation in pulmonary artery tissue and smooth muscle cells. Mol Cell Biochem 215(1–2):103–113

    Article  PubMed  CAS  Google Scholar 

  • van Thienen JV, Fledderus JO, Dekker RJ, Rohlena J, van Ijzendoorn GA, Kootstra NA, Pannekoek H, Horrevoets AJ (2006) Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res 72:231–240

    Article  PubMed  CAS  Google Scholar 

  • Torsoni AS, Marin TM, Velloso LA, Franchini KG (2005) RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol 289:H1488–H1496

    CAS  Google Scholar 

  • Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685

    Article  PubMed  CAS  Google Scholar 

  • Tremblay LN, Slutsky AS (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 110:482–488

    PubMed  CAS  Google Scholar 

  • Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952

    Article  PubMed  CAS  Google Scholar 

  • Tsan MF, Gao B (2004) Heat shock protein and innate immunity. Cell Mol Immunol 1(4):274–279

    PubMed  CAS  Google Scholar 

  • Tsuda A, Stringer BK, Mijailovich SM, Rogers RA, Hamada K, Gray ML (1999) Alveolar cell stretching in the presence of fibrous particles induces interleukin-8 responses. Am J Respir Cell Mol Biol 21:455–462

    PubMed  CAS  Google Scholar 

  • Uhlig S (2002) Ventilation-induced lung injury and mechanotransduction. Stretching it too far? Am J Physiol 282:L892–L896

    CAS  Google Scholar 

  • Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277:L167–L173

    PubMed  CAS  Google Scholar 

  • Wamel JET van, Ruwhof C, van der Valk-Kokshoorn, Schrier PI, van der Laarse A (2002) Stretch-induced paracrine hypertrophic stimuli increase TGF-β1 expression in cardiomyocytes. Mol Cell Biochem 236:147–153

    Article  PubMed  Google Scholar 

  • Wang JH-C, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomechan Mod Mechanobiol 5:1–16

    Article  CAS  Google Scholar 

  • Wang DL, Wung BS, Peng YC, Wang JJ (1995) Mechanical strain increases endothelin-1 gene expression via protein kinase C pathway in human endothelial cells. J Cell Physiol 163(2):400–406

    Article  PubMed  CAS  Google Scholar 

  • Wang BW, Chang H, Lin S, Kuan P, Shyu KG (2003) Induction of matrix metalloproteinase-14 and -2 by cyclical mechanical stretch is mediated by tumor necrosis factor-a in cultured human umbilical vein endothelial cell. Cardiovasc Res 59:460–469

    Article  PubMed  CAS  Google Scholar 

  • Wang BW, Hung HF, Chang H, Kuan P, Shyu KG (2007a) Mechanical stretch enhances the expression of resistin gene in cultured cardiomyocytes via tumor necrosis factor-a. Am J Physiol 293:H2305–H2312

    CAS  Google Scholar 

  • Wang XL, Fu A, Raghavakaimal S, Lee HC (2007b) Proteomic analysis of vascular endothelial cells in response to laminar shear stress. Proteomics 7:588–596

    Article  PubMed  CAS  Google Scholar 

  • Wasserman SM, Mehraban F, Komuves LG, Yang RB, Tomlinson JE, Zhang Y, Spriggs F, Topper JN (2002) Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol Genomics 12:13–23

    PubMed  CAS  Google Scholar 

  • Waters CM (2004) Reactive oxygen species in mechanotransduction. Am J Physiol 287:L484–L485

    Article  CAS  Google Scholar 

  • Waters CM, Sporn PHS, Liu M, Fredberg JJ (2002) Cellular biomechanics in the lung. Am J Physiol Lung Cell Mol Physiol 283:L503–L509

    PubMed  CAS  Google Scholar 

  • Wernig F, Mayr M, Xu Q (2003) Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by beta1-integrin signaling pathways. Hypertension 41(4):903–911

    Article  PubMed  CAS  Google Scholar 

  • Wilson E, Mai Q, Sudhir K, Weiss RH, Ives HE (1993) Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol 123:741–747

    Article  PubMed  CAS  Google Scholar 

  • Woo CH, Shishido T, McClain C, Lim JH, Li JD, Yang J, Yan C, Abe J (2008) Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ Res 102(5):538–545

    Article  PubMed  CAS  Google Scholar 

  • Wung BS, Cheng JJ, Shyue SK, Wang DL (2001) NO modulates monocyte chemotactic protein-1 expression in endo- thelial cells under cyclic strain. Arterioscler Thromb Vasc Biol 21:1941–1947

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H, Yazaki Y (1996) Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 271:3221–3228

    Article  PubMed  CAS  Google Scholar 

  • Zampetaki A, Zhang Z, Hu Y, Xu Q (2005) Biomechanical stress induces IL-6 expression in smooth muscle cells via Ras/Rac1-p38 MAPK-NF-kappaB signaling pathways. Am J Physiol 288(6):H2946–H2954

    CAS  Google Scholar 

  • Zeidan A, Broman J, Hellstrand P, Sward K (2003) Cholesterol dependence of vascular ERK1/2 activation and growth in response to stretch: role of endothelin-1. Arterioscler Thromb Vasc Res 23:1528–1534

    Article  CAS  Google Scholar 

  • Zhang Y, Lee TS, Kolb EM, Sun K, Lu X, Sladek FM, Kassab GS, Garland T Jr, Shyy JY (2006) AMP-activated protein kinase is involved in endothelial NO synthase activation in response to shear stress. Arterioscler Thromb Vasc Biol 26:1281–1287

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ (2001) Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. Am J Physiol 280:H909–H917

    CAS  Google Scholar 

  • Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (grant No. 09-04-01277-a). AK’s Department was supported by Ministry of Education and Science of the Russian Federation. The Order of Ministry of Education and Science of the Russian Federation No. 743 from 01 July 2010, Supplement, Event 4.4, the Period of Financing 2010–2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Kovalchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kovalchuk, L.V. et al. (2012). Mechanical Stretching of Cells of Different Tissues: The Role of Mediators of Innate Immunity. In: Kamkin, A., Kiseleva, I. (eds) Mechanical Stretch and Cytokines. Mechanosensitivity in Cells and Tissues, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2004-6_2

Download citation

Publish with us

Policies and ethics