Skip to main content

Identification of Mechanosensitive Genes in Chondrocytes and Osteoblasts and Their Role in OA Pathogenesis

  • Chapter
  • First Online:

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 5))

Abstract

Osteoarthritis is a pathological condition resulting of the deregulation of the homeostatic mechanisms of the whole joint, triggered by mechanical and biochemical factors. Mechanical factors play a key role in this process by directly breaking the matrix scaffold or by altering the production of matrix components and anabolic/catabolic factors. However, recent studies have shown that only some, but not all genes and regulatory pathways are sensitive to mechanical stimuli. It is also emphasized that cell responses to mechanical stimuli are dependent of their physical characteristics including the magnitude and the frequency. This chapter proposes a review of the responses of chondrocytes and osteoblasts to mechanical stimuli described in the literature recently.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal S, Deschner J, Long P, Verma A, Hofman C, Evans CH, Piesco N (2004) Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum 50:3541–3548

    Article  PubMed  CAS  Google Scholar 

  • Ando A, Hagiwara Y, Tsuchiya M, Onoda Y, Suda H, Chimoto E, Itoi E (2009) Increased expression of metalloproteinase-8 and -13 on articular cartilage in a rat immobilized knee model. Tohoku J Exp Med 217:271–278

    Article  PubMed  CAS  Google Scholar 

  • Bakker AD, Joldersma M, Klein-Nulend J, Burger EH (2003) Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am J Physiol Endocrinol Metab 285:E608–613

    PubMed  CAS  Google Scholar 

  • Bakker AD, Klein-Nulend J, Tanck E, Heyligers IC, Albers GH, Lips P, Burger EH (2006) Different responsiveness to mechanical stress of bone cells from osteoporotic versus osteoarthritic donors. Osteoporos Int 17:827–833

    Article  PubMed  CAS  Google Scholar 

  • Chen NX, Geist DJ, Genetos DC, Pavalko FM, Duncan RL (2003) Fluid shear-induced NFkappaB translocation in osteoblasts is mediated by intracellular calcium release. Bone 33:399–410

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Huang L, Hamza A, Gao D, Zhan CG, Tai HH (2006) Role of glutamine 148 of human 15-hydroxyprostaglandin dehydrogenase in catalytic oxidation of prostaglandin E2. Bioorg Med Chem 14:6486–6491

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury TT, Bader DL, Lee DA (2003) Dynamic compression counteracts IL-1 beta-induced release of nitric oxide and PGE2 by superficial zone chondrocytes cultured in agarose constructs. Osteoarthritis Cartilage 11:688–696

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury TT, Bader DL, Lee DA (2006) Anti-inflammatory effects of IL-4 and dynamic compression in IL-1beta stimulated chondrocytes. Biochem Biophys Res Commun 339:241–247

    Article  PubMed  CAS  Google Scholar 

  • De Benedetti F, Rucci N, Del Fattore A, Peruzzi B, Paro R, Longo M, Vivarelli M, Muratori F, Berni S, Ballanti P, Ferrari S, Teti A (2006) Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum 54:3551–3563

    Article  PubMed  Google Scholar 

  • Ferretti M, Srinivasan A, Deschner J, Gassner R, Baliko F, Piesco N, Salter R, Agarwal S (2005) Anti-inflammatory effects of continuous passive motion on meniscal fibrocartilage. J Orthop Res 23:1165–1171

    Article  PubMed  Google Scholar 

  • Ferretti M, Gassner R, Wang Z, Perera P, Deschner J, Sowa G, Salter RB, Agarwal S (2006) Biomechanical signals suppress proinflammatory responses in cartilage: early events in experimental antigen-induced arthritis. J Immunol 177:8757–8766

    PubMed  CAS  Google Scholar 

  • Fitzgerald JB, Jin M, Chai DH, Siparsky P, Fanning P, Grodzinsky AJ (2008) Shear- and compression-induced chondrocyte transcription requires MAPK activation in cartilage explants. J Biol Chem 283:6735–6743

    Article  PubMed  CAS  Google Scholar 

  • Fox SW, Chambers TJ, Chow JW (1996) Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol 270:E955–E960

    PubMed  CAS  Google Scholar 

  • Franchimont N, Wertz S, Malaise M (2005) Interleukin-6: an osteotropic factor influencing bone formation? Bone

    Google Scholar 

  • Gassner R, Buckley MJ, Georgescu H, Studer R, Stefanovich-Racic M, Piesco NP, Evans CH, Agarwal S (1999) Cyclic tensile stress exerts antiinflammatory actions on chondrocytes by inhibiting inducible nitric oxide synthase. J Immunol 163:2187–2192

    PubMed  CAS  Google Scholar 

  • Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem H, Hashimoto K, Roach HI, Olivotto E, Borzi RM, Marcu KB (2011) Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater 21:202–220

    PubMed  CAS  Google Scholar 

  • Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Saffar JL, Jacques C (2006) Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene. Arthritis Res Ther 8:R135

    Article  PubMed  Google Scholar 

  • Grimston SK, Screen J, Haskell JH, Chung DJ, Brodt MD, Silva MJ, Civitelli R (2006) Role of connexin43 in osteoblast response to physical load. Ann N Y Acad Sci 1068:214–224

    Article  PubMed  CAS  Google Scholar 

  • Harada SI, Balena R, Rodan GA, Rodan SB (1995) The role of prostaglandins in bone formation. Connect Tissue Res 31:279–282

    Article  PubMed  CAS  Google Scholar 

  • Hardy MM, Seibert K, Manning PT, Currie MG, Woerner BM, Edwards D, Koki A, Tripp CS (2002) Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum 46:1789–1803

    Article  PubMed  CAS  Google Scholar 

  • Hoffler CE, Hankenson KD, Miller JD, Bilkhu SK, Goldstein SA (2006) Novel explant model to study mechanotransduction and cell-cell communication. J Orthop Res 24:1687–1698

    Article  PubMed  Google Scholar 

  • Honda K, Ohno S, Tanimoto K, Ijuin C, Tanaka N, Doi T, Kato Y, Tanne K (2000) The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur J Cell Biol 79:601–609

    Article  PubMed  CAS  Google Scholar 

  • Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26:311–318

    Article  PubMed  CAS  Google Scholar 

  • Inoue D, Kido S, Matsumoto T (2004) Transcriptional induction of FosB/DeltaFosB gene by mechanical stress in osteoblasts. J Biol Chem 279:49795–49803

    Article  PubMed  CAS  Google Scholar 

  • Jackson RA, Kumarasuriyar A, Nurcombe V, Cool SM (2006) Long-term loading inhibits ERK1/2 phosphorylation and increases FGFR3 expression in MC3T3-E1 osteoblast cells. J Cell Physiol 209:894–904

    Article  PubMed  CAS  Google Scholar 

  • Jacques C, Sautet A, Moldovan M, Thomas B, Humbert L, Berenbaum F (1999) Cyclooxygenase activity in chondrocytes from osteoarthritic and healthy cartilage. Rev Rhum Engl Ed 66:701–704

    PubMed  CAS  Google Scholar 

  • Jansen JH, Weyts FA, Westbroek I, Jahr H, Chiba H, Pols HA, Verhaar JA, van Leeuwen JP, Weinans H (2004) Stretch-induced phosphorylation of ERK1/2 depends on differentiation stage of osteoblasts. J Cell Biochem 93:542–551

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T (2007) Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem 101:1266–1277

    Article  PubMed  CAS  Google Scholar 

  • Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7:33–42

    Article  PubMed  CAS  Google Scholar 

  • Koyama Y, Mitsui N, Suzuki N, Yanagisawa M, Sanuki R, Isokawa K, Shimizu N, Maeno M (2008) Effect of compressive force on the expression of inflammatory cytokines and their receptors in osteoblastic Saos-2 cells. Arch Oral Biol 53:488–496

    Article  PubMed  CAS  Google Scholar 

  • Kusumi A, Sakaki H, Kusumi T, Oda M, Narita K, Nakagawa H, Kubota K, Satoh H, Kimura H (2005) Regulation of synthesis of osteoprotegerin and soluble receptor activator of nuclear factor-kappaB ligand in normal human osteoblasts via the p38 mitogen-activated protein kinase pathway by the application of cyclic tensile strain. J Bone Miner Metab 23:373–381

    Article  PubMed  CAS  Google Scholar 

  • Lee DA, Bader DL (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 15:181–188

    Article  PubMed  Google Scholar 

  • Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A (2006) Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 349:1–5

    Article  PubMed  CAS  Google Scholar 

  • Liu XH, Kirschenbaum A, Yao S, Levine AC (2005) Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology 146:1991–1998

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Liu T, Zheng Y, Zhao Z, Liu Y, Cheng H, Luo S, Chen Y (2006a) Early responses of osteoblast-like cells to different mechanical signals through various signaling pathways. Biochem Biophys Res Commun 348:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Liu XH, Kirschenbaum A, Yao S, Levine AC (2006b) Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann N Y Acad Sci 1068:225–233

    Article  PubMed  CAS  Google Scholar 

  • Mann V, Huber C, Kogianni G, Jones D, Noble B (2006) The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J Musculoskelet Neuronal Interact 6:408–417

    PubMed  CAS  Google Scholar 

  • Mikuni-Takagaki Y (1999) Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab 17:57–60

    Article  PubMed  CAS  Google Scholar 

  • Mitsui N, Suzuki N, Maeno M, Yanagisawa M, Koyama Y, Otsuka K, Shimizu N (2006) Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sci 78:2697–2706

    Article  PubMed  CAS  Google Scholar 

  • Miwa M, Saura R, Hirata S, Hayashi Y, Mizuno K, Itoh H (2000) Induction of apoptosis in bovine articular chondrocyte by prostaglandin E(2) through cAMP-dependent pathway. Osteoarthritis Cartilage 8:17–24

    Article  PubMed  CAS  Google Scholar 

  • Mohtai M, Gupta MK, Donlon B, Ellison B, Cooke J, Gibbons G, Schurman DJ, Smith RL (1996) Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. J Orthop Res 14:67–73

    Article  PubMed  CAS  Google Scholar 

  • Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, Reeve J, Skerry TM, Lanyon LE (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284:C934–C943

    PubMed  CAS  Google Scholar 

  • Nomura S, Takano-Yamamoto T (2000) Molecular events caused by mechanical stress in bone. Matrix Biol 19:91–96

    Article  PubMed  CAS  Google Scholar 

  • Palmqvist P, Persson E, Conaway HH, Lerner UH (2002) IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol 169:3353–3362

    PubMed  CAS  Google Scholar 

  • Reilly GC, Haut TR, Yellowley CE, Donahue HJ, Jacobs CR (2003) Fluid flow induced PGE2 release by bone cells is reduced by glycocalyx degradation whereas calcium signals are not. Biorheology 40:591–603

    PubMed  CAS  Google Scholar 

  • Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367:1–16

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto J, Origuchi T, Okita M, Nakano J, Kato K, Yoshimura T, Izumi S, Komori T, Nakamura H, Ida H, Kawakami A, Eguchi K (2009) Immobilization-induced cartilage degeneration mediated through expression of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and chondromodulin-I. Connect Tissue Res 50:37–45

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F (2009) Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 17:473–481

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Takagi M, Konttinen YT, Sasaki A, Tamaki Y, Ogino T, Santavirta S, Salo J (2007) Upregulation of matrix metalloproteinase (MMP)-1 and its activator MMP-3 of human osteoblast by uniaxial cyclic stimulation. J Biomed Mater Res B Appl Biomater 80:491–498

    PubMed  Google Scholar 

  • Siddhivarn C, Banes A, Champagne C, Riche EL, Weerapradist W, Offenbacher S (2006) Prostaglandin D2 pathway and peroxisome proliferator-activated receptor gamma-1 expression are induced by mechanical loading in an osteoblastic cell line. J Periodontal Res 41:92–100

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Chang EI, Gossain AK, Mehara BJ, Galiano RD, Jensen J, Longaker MT, Gurtner GC, Saadeh PB (2007) Cyclic mechanical strain increases production of regulators of bone healing in cultured murine osteoblasts. J Am Coll Surg 204:426–434

    Article  PubMed  Google Scholar 

  • Sun HB (2010) Mechanical loading, cartilage degradation, and arthritis. Ann N Y Acad Sci 1211:37–50

    Article  PubMed  CAS  Google Scholar 

  • Suzawa T, Miyaura C, Inada M, Maruyama T, Sugimoto Y, Ushikubi F, Ichikawa A, Narumiya S, Suda T (2000) The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology 141:1554–1559

    Article  PubMed  CAS  Google Scholar 

  • Tanaka SM, Sun HB, Roeder RK, Burr DB, Turner CH, Yokota H (2005) Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix. Calcif Tissue Int 76:261–271

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Lin Z, Li YM (2006) Effects of different magnitudes of mechanical strain on Osteoblasts in vitro. Biochem Biophys Res Commun 344:122–128

    Article  PubMed  CAS  Google Scholar 

  • Torzilli PA, Bhargava M, Park S, Chen CT (2010) Mechanical load inhibits IL-1 induced matrix degradation in articular cartilage. Osteoarthritis Cartilage 18:97–105

    Article  PubMed  CAS  Google Scholar 

  • Turner CH, Yoshikawa T, Forwood MR, Sun TC, Burr DB (1995) High frequency components of bone strain in dogs measured during various activities. J Biomech 28:39–44

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Buckley MJ, Evans CH, Agarwal S (2000) Cyclic tensile strain acts as an antagonist of IL-1 beta actions in chondrocytes. J Immunol 165:453–460

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Henrotin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Henrotin, Y., Pesesse, L., Sanchez, C. (2012). Identification of Mechanosensitive Genes in Chondrocytes and Osteoblasts and Their Role in OA Pathogenesis. In: Kamkin, A., Kiseleva, I. (eds) Mechanical Stretch and Cytokines. Mechanosensitivity in Cells and Tissues, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2004-6_10

Download citation

Publish with us

Policies and ethics