Skip to main content

Non Bee Pollinators-Plant Interaction

  • Chapter
  • First Online:
Pollination Biology

Abstract

Global inventories of biodiversity indicate that more than 100,000 different animal species – and perhaps as many as 200,000 – play roles in pollinating the 250,000 kinds of wild flowering plants on this planet. Only 15% of these crops are serviced by domestic honey bees, while at least 80% are pollinated by wild bees and other wildlife. In addition to countless bees, number of non bee pollinators such as wasps, moths, butterflies, flies, beetles and other invertebrates, perhaps 1,500 species of vertebrates such as birds, bats and non-flying mammals (several species of monkey, marsupials, primates, rodents, lemur, tree squirrels) have long been reported to visit flowers and serve as effective pollinators. Birds represent a group of animals that have evolved in parallel with flowering plants along lines of pollination syndromes. Hummingbirds are the best-known wildlife pollinators, but perching birds, flying foxes, fruit bats, possums, lemurs and even a gecko function as effective pollinators. Mammals are not generally known for their pollinating activities, but one group stands out as an exception - the nectar feeding bats. There are also examples of marsupial mammals serving as pollinators, as shown by the “honey possum” of Australia, and there have even been reports of pollination being effected by rodent species. Globally, over 100 species of birds and mammals in 60 genera of vertebrate pollinators are already listed as endangered and untold numbers of invertebrates are at risk as well. Much more research is still required to understand the importance of these animals in pollination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (2003a) Mutualism: lecture 11 outline. Entomology BIOL 4731. http://www.w3.org/TR/REC-html.40

  • Anonymous (2003b) Bees behavior during foraging, Apiary Fact Sheet # 111. http://agf.gov.bc.ca/apiculture/factsheets/111_forage.html

  • Atwood J Jr (1982) How is Paphiopedilum pollinated? Am Orchid Soc Bull 51:1057–1058

    Google Scholar 

  • Austin DF (1997) Dissolution of Ipomoea series Anisomerae (Convolvulaceae). J Torr Bot Soc 124:140–159

    Article  Google Scholar 

  • Ayensu ES (1974) Plant and bat interactions in West Africa. Ann Mo Bot Gard 61:702–727

    Article  Google Scholar 

  • Baker HG, Baker I (1990) The predictive value of nectar chemistry to the recognition of pollinator types. Isr J Bot 39:157–166

    CAS  Google Scholar 

  • Baker HG, Baker I, Hodges SA (1998) Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica 30(4):559–586

    Article  Google Scholar 

  • Bates R (1977) Pollination of South Australian orchids — Part 4. Native Orchid Soc S Aust Newsl 1(6):8

    Google Scholar 

  • Beynon RM, Struckmeyer HIM, Totterdell JM (1992) Australia – evolution of a continent. Bureau of Mineral Resources Palaeogeographic-Group, Australian Government Publishing Service, Canberra

    Google Scholar 

  • Bowe LM, Coat G, de Pamphilis C (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097

    Article  PubMed  CAS  Google Scholar 

  • Carpenter FL (1978) Hooks for mammal pollination? Oecologia 35:123–132

    Article  Google Scholar 

  • Carthew SM, Goldingay RL (1997) Non-flying mammals as pollinators. Trends Ecol Evol 12(3):104–108

    Article  PubMed  CAS  Google Scholar 

  • Castilla AM (1999) Podarcis lilfordi from the Balearic islands as a potential disperser of the rare Mediterranean plant Withania frutescens. Acta Oecologica 20:103–107

    Article  Google Scholar 

  • Castilla AM (2000) Does passage time through the lizard Podarcis lilfordi’s gut affect germination performance in the plant Withania frutescens? Acta Oecologica 21:119–124

    Article  Google Scholar 

  • Castilla AM, Bauwens D (1991) Observations on the natural history, present status, and conservation of the insular lizard Podarcis hispanica atrata on the Columbretes Archipelago, Spain. Biol Conserv 58:69–84

    Article  Google Scholar 

  • Chadwick CE (1993) The roles of Tranes lyterioides and T. sparsus Boh (Col., Curculionidae) in the pollination of Macrozamia communis (Zamiaceae). In: Stevenson DW, Norstog NJ (eds) Proceedings of CYCAD 90, second international conference on Cycad biology. Palm and Cycad Societies of Australia Ltd, Milton, pp 77–80

    Google Scholar 

  • Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97:4086–4091

    Article  PubMed  CAS  Google Scholar 

  • Churchill DM, Christensen P (1970) Observations on pollen harvesting by brush-tongued lorikeets. Aust J Zool 18:427–437

    Article  Google Scholar 

  • Clout MN, Hay JR (1989) The importance of birds as browsers, pollinators and seed dispersers in New Zealand forests. N Z J Ecol 12(supplement):27–33

    Google Scholar 

  • Coe MJ, Isaac FM (1965) Pollination of the baobab (Adansonia digitata L.) by the lesser bush baby (Galago crassicaudatus E. Geoffroy). E Afr wildl J 3:123–124

    Article  Google Scholar 

  • Corlett RT (1998) Frugivory and seed dispersal by vertebrates in the Oriental (Indomalayan) region. Biol Rev Camb Philos Soc 73:413–448

    Article  PubMed  CAS  Google Scholar 

  • Côrtes FJE, Vasconcellos-Neto J, Garcia MA, Teixeira De Souza AL (1994) Saurocory in Melocactus violaceus (cactaceae). Biotropica 26:295–301

    Article  Google Scholar 

  • Cranston PS, Naumann ID (1991) Biogeography. In: CSIRO (ed) The insects of Australia, 2nd edn. Melbourne University Press, Melbourne, pp 180–197

    Google Scholar 

  • Darwin C (1876) The effects of cross and self fertilisation in the vegetable kingdom. Murray, London

    Google Scholar 

  • Darwin C (1877) The different forms of flower on plants of the same species. Murray, London

    Book  Google Scholar 

  • Davies SJ (1999) A new Myrmecophytic Thrip-pollinated species of Macaranga from the highlands of Sarawak. Harv Pap Bot 4:433–437

    Google Scholar 

  • Dearing DM, Schall JJ (1992) Testing models of optimal diet assembly by the generalist herbivorous lizard Cnemidophorus murinus. Ecology 73:845–858

    Article  Google Scholar 

  • Degener O (1945) Plants of Hawaii National park illustrative of plants and customs of the south seas. Edwards, Michigan, 333 pp

    Google Scholar 

  • Deng X-B, Ren P-Y, Gao J-Y, Li Q-J (2004) The striped squirrel (Tamiops swinhoei hainanus) as a nectar robber of ginger (Alpinia kwangsiensisy). Biotropica 36:633–636

    Google Scholar 

  • Downes JA (1958) The feeding habits of biting flies and their significance in classification. Annu Rev Entomol 3:249–266

    Article  Google Scholar 

  • Doyle GA (1974) Behavior of prosimians. In: Schrier AM, Stollnitz F (eds) Behavior of nonhuman primates. Academic, New York, pp 155–353

    Google Scholar 

  • Eifler DA (1995) Patterns of plant visitation by nectarfeeding lizards. Oecologia 101:228–233

    Article  Google Scholar 

  • Endress PK (1979) Noncarpellary pollination and ‘hyperstigma’ in an angiosperm (Jambourissa religiosa, Monimiaceae). Experienta 35:45

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1963) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Faegri K, van der pijl L (1966) The principles of pollination ecology. Pergamon Press, London, 248 pp

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Fenton MB, Fleming TH (1976) Ecological interactions between bats and nocturnal birds. Biotropica 8:104–110

    Article  Google Scholar 

  • Fialho RF (1990) Seed dispersal by a lizard and a treefrog - effect of dispersal site on seed survivorship. Biotropica 22:423–424

    Article  Google Scholar 

  • Ford HA, Paton DC, Forde N (1979) Birds as pollinators of Australian plants. N Z J Bot 17:509–519

    Article  Google Scholar 

  • Forster PI, Machin PJ, Mound LA, Wilson GW (1994) Insects associated with reproductive ­structures of cycads in Queensland and North-east New South Wales, Australia. Biotropica 26:217–222

    Article  Google Scholar 

  • Free JB (1993) Insect pollination of crops, 2nd edn. Academic, London

    Google Scholar 

  • Friis EM, Chalconer WG, Crane PR (eds) (1987) The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge

    Google Scholar 

  • Gardner AL (1977) Feeding habits. In: Baker RJ, Jones JK, Carter DC (eds) Biology of bats of the new world family Phyllostomatidae. Part II. Special Publications. Museum Texas Tech Univ, Lubbock, pp 293–350

    Google Scholar 

  • Gautier-Hion A, Maisels F (1994) Mutualism between a leguminous tree and large African monkeys as pollinators. Behav Ecol Sociobiol 34(3):203–210

    Article  Google Scholar 

  • Gibernau M, Barabe D, Cerdan P, Dejean A (1999) Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. Int J Plant Sci 160(6):1135–1143

    Article  PubMed  Google Scholar 

  • Glander K (1975) In: Tuttle RH (ed) World anthropology: socioecology and psychology of primates. Mouton, The Hague, pp 37–57

    Google Scholar 

  • Godley EJ (1979) Flower biology in New Zealand. N Z J Bot 17:441–446

    Article  Google Scholar 

  • Goldblatt P, Manning JC (2000) The long-proboscid fly pollination system in southern Africa. Ann Mo Bot Gard 87:146–170

    Article  Google Scholar 

  • Gottsberger G (1977) Some aspects of beetle pollination in the evolution of flowering plants. Plant Syst Evol 1(Suppl):211–226

    Google Scholar 

  • Gottsberger G (1986) Some pollination strategies in Neotropical savannas and forests. Plant Syst Evol 152:29–45

    Article  Google Scholar 

  • Gottsberger G (1990) Flowers and beetles in the South American Tropics. Bot Acta 103:360–365

    Google Scholar 

  • Gottsberger G, Amaral A (1984) Pollination strategies in Brazilian Philodendron species. Ber Dtsch Bot Ges Bd 97S:391–410

    Google Scholar 

  • Grant V, Grant K (1965) Flower pollination in the phlox family. Columbia University Press, New York, 180 pp

    Google Scholar 

  • Grimaldi D (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann Mo Bot Gard 86:373–406

    Article  Google Scholar 

  • Gumprecht R (1977) Seltsame Bestaubungsvorgange bei Orchideen. Die Orchid 3(28):5–23

    Google Scholar 

  • Henderson A (1986) A review of pollination studies in the Palmae. Bot Rev 52:221–259

    Article  Google Scholar 

  • Hocking B (1953) The intrinsic range and speed of flight of insects. Trans R Entomol Soc Lond 104:223–345

    Google Scholar 

  • Hódar JA, Campos F, Rosales BA (1996) Trophic ecology of the Ocellated lizard Lacerta lepida in an arid zone of southern Spain: relationships with availability and daily activity of prey. J Arid Environ 33:95–107

    Article  Google Scholar 

  • Hunter FF, Burgin SG, Woodhouse A (2000) Shattering the folklore: blackflies do not pollinate sweet lowbush blueberry. Can J Zool 78:2051–2054

    Article  Google Scholar 

  • Ingram M, Nabhan G, Buchmann S (1996) Our forgotten pollinators: protecting the birds and bees. Glob Pest Campaign 6(4):1–8

    Google Scholar 

  • Ingram M, Nabhan GP, Buchmann SL (with assistance from the Board of Advisors of the Forgotten Pollinators) (1996a) Ten essential reasons to protect the birds and the bees: How an impending pollination crisis threatens plants and the food on your yable. Forgotten Pollinators Campaign, Arizona-Sonora Desert Museum, Tuscon

    Google Scholar 

  • Irvine AK, Amstrong JE (1990) Beetle pollination in tropical forests of Australia. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants, vol 7, Man and the biosphere. UNESCO, Paris, pp 135–149

    Google Scholar 

  • Iverson JB (1985) Lizards as seed dispersers? J Herpetol 19:292–293

    Article  Google Scholar 

  • Johnson LAS, Briggs BG (1963) Evolution in the Proteaceae. Aust J Bot 2(1):21–61

    Article  Google Scholar 

  • Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15:140–143

    Article  PubMed  Google Scholar 

  • Jones DL (1972) Pollination of Phrasophyllum alpinum R. Br. Victorian Nat 89(9):260–263

    Google Scholar 

  • Jones DL (1975) The pollination of Microtis parviflora R. Br. Ann Bot 39:585–589

    Google Scholar 

  • Jones DL, Gray B (1974) The pollination of Calochilus holtzei F. Muell. Am Orchid Soc Bull 43(7):604–606

    Google Scholar 

  • Jumelle H, Perrier de la Bâthie H (1910) Fragments biologiques de la flore de Madagascar (Dioscorea, Adansonia, Coffea etc.). IV. Les ignames du Nord-Ouest. Musée Colonial de Marseille 8:388–428

    Google Scholar 

  • Kearns CA (2001) North American dipteran pollinators: assessing their value and conservation status. Conserv Ecol 5(1):5

    Google Scholar 

  • Keighery GJ (1974) Mecoptera as vectors — a new record. W Aust Nat 13(1):17–19

    Google Scholar 

  • Keighery GJ (1975a) Pollination of Hibbertia hypericoides (Dilleniaceae) and its evolutionary significance. J Nat Hist 9:681–684

    Article  Google Scholar 

  • Keighery GJ (1975b) Parallel Evolution of floral structures in Darwinia (Myrtaceae) and Pimelea (Thymeleaceae (sic)). J Nat Hist 13:46–50

    Google Scholar 

  • Keighery GJ (1975c) Breeding systems of the Western Australian Flora I. Triglochin L. (Juncaginaceae). W Aust Nat 13(4):811

    Google Scholar 

  • Kenneally KF (1970) Diplopeltis huegelii Endl. var. huegelii. Unpublished biological flora of Western Australia. Botany Department, University of Western Australia, Perth

    Google Scholar 

  • Kevan PG (1972) Insect pollination of high arctic flowers. J Ecol 60:831–847

    Article  Google Scholar 

  • Kevan PG (2001) Pollination: a plinth, pedestal, and pillar for terrestrial productivity. The why, how, and where of pollination protection, conservation and promotion. In: Stubbs CS, Drummond FA (eds) Bees and crop pollination – crisis, crossroads, conservation. Thomas Say publications in entomology. Entomological Society of America, Lanham, pp 7–68

    Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453

    Article  Google Scholar 

  • Kevan PG, Tikhmenev EA, Usui M (1993) Insects and plants in the pollination ecology of the boreal zone. Ecol Res 8:247–267

    Article  Google Scholar 

  • Key KHL (1974) Orthoptera. In: Supplement to the insects of Australia. Melbourne University Press, Carlton, pp 45–47, 146 pp

    Google Scholar 

  • Kirk WDJ (1997) Feeding. In: Lewis T (ed) Thrips as crop pests. CAB International, Wallingford, pp 119–174

    Google Scholar 

  • Knox RB, Kenrick J, Bernhardt P, Marginson R, Beresford G, Baker I, Baker HG (1985) Extrafloral nectaries as adaptations for bird pollination in acacia terminalis. Am J Bot 72(8):1185–1196

    Article  Google Scholar 

  • Knudsen JT, Tollsten L (1995) Floral scent in bat-pollinated plants: a case of convergent evolution. Bot J Linn Soc 119:45–57

    Article  Google Scholar 

  • Knuth P (1895–1905) Handbuch der Blutenbiologie IIII. Engelmann, Leipzig, 2973 pp

    Google Scholar 

  • Kukalova-Peck J (1991) Fossil history and the evolution of hexapod structures. In: CSIRO (ed) The insects of Australia, 2nd edn. Melbourne University Press, Melbourne, pp 141–179

    Google Scholar 

  • Labandeira CC (1998) How old is the flower and the fly? Science 280:57–59

    Article  CAS  Google Scholar 

  • Labendeira CC, Seposki JJ (1993) Insect diversity in the fossil record. Science 261:310–315

    Article  Google Scholar 

  • Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH (2001) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1:1–8

    PubMed  CAS  Google Scholar 

  • Ladd PG, Connell SW (1993) Vicariant Macrozamia species in southern Australia? In: Vorster P (ed) Proceedings of the third international conference on cycad biology: conservation through cultivation, vol 3. Cycad Society of South Africa, Stellenbosch, pp 225–240

    Google Scholar 

  • Larson BMH, Kevan PG, Inouye DW (2001) Flies and flowers: taxonomic diversity of anthophiles and pollinators. Can Entomol 133:439–465

    Article  Google Scholar 

  • Leppik EE (1956) The form and function of numerical patterns in flowers. Am J Bot 43(7):445–455

    Article  Google Scholar 

  • Leppik EE (1960) Early evolution of flower types. Lloydia 23:72–92

    Google Scholar 

  • Levesque CM, Burger JF (1982) Insects (Diptera, Hymenoptera) associated with Minuartia groenlandica (Caryophyllaceae) on Mount Washington, New Hampshire, U.S.A., and their possible role as pollinators. Arctic Alpine Res 14:117–124

    Article  Google Scholar 

  • Lloyd DG (1985) Progress in understanding the natural history of New Zealand plants. N Z J Bot 23:707–722

    Article  Google Scholar 

  • Mandujano S, Gallina S, Bullock SH (1994) Frugivory and dispersal of Spondias purpurea (Anacardiaceae) in a tropical deciduous forest in Mexico. Rev Biol Trop 42:107–114

    Google Scholar 

  • Marullo R, Mound LA (1995) Su una classificazione sopra-generica della famiglia Aeolothripidae (Thysanoptera). In: Atti del XVII Congresso Nazionfale Italiano di Entomologia, Udine, pp 87–90

    Google Scholar 

  • McGregor SE (1976) Pollinating agents and their comparative value. In: Insect pollination of cultivated crop plants, Agriculture handbook, USDA, vol. 496. USDA, Washington, DC, pp 19–23

    Google Scholar 

  • Mees GF (1967) A note on the pollination of the Kangaroo paw Anigozanthos manglesii. W Aust Nat 10(2):149–151

    Google Scholar 

  • Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, Sakai S, Harrison RD et al (1998) Pollination biology in a lowland dipterocarp forest in Sarawak. Malaysia. I. Characteristics of the plantpollinator community in a lowland dipterocarp forest. Am J Bot 85:1477–1501

    Article  PubMed  CAS  Google Scholar 

  • Monteith GB (1973) Entomological notes (Dung Beetles as pollinators of an Arum Lily). News Bull Entomol Soc Qld 97:13

    Google Scholar 

  • Moog U, Fiala B, Federle W, Maschwitz U (2002) Thrips pollination of the dioecious ant plant Macaranga hullettii (Euphorbiaceae) in Southeast Asia. Am J Bot 89:50–59

    Google Scholar 

  • Morcombe MK (1978a) Michael Morcombe’s Australian marsupials and other native mammals. Summit Books, Paul Hamlyn, Sydney, 100 pp

    Google Scholar 

  • Morcombe MK (1978b) Michael Morcombe’s wild Australia. Summit Books, Paul Hamlyn, Sydney, 112 pp

    Google Scholar 

  • Mound LA (1974) Thysanoptera. In: Supplement to the insects of Australia. Melbourne University Press, Carlton, pp 57–60, 146 p

    Google Scholar 

  • Mound LA (1991) The first thrips species (Insecta, Thysanoptera) from cycad male cones and its family level significance. J Nat Hist 25:647–652

    Article  Google Scholar 

  • Mound LA, Terry I (2001) Pollination of the central Australian cycad, Macrozamia macdonnellii, by a new species of basal clade thrips (Thysanoptera). Int J Plant Sci 162:147–154

    Article  Google Scholar 

  • Mound LA, den Hollander E, den Hollander L (1998) Do thrips help pollinate Macrozamia cycads? Vic Entomol 28:86–88

    Google Scholar 

  • Muller H (1883) The fertilisation of flowers. In:Translated and edited by Thompson DW. Macmillan, London, 669 pp

    Google Scholar 

  • Nabhan GP, Buchmann SL (1997) Services provided by pollinators. In: Daily G (ed) Nature’s services. Island Press, Washington DC, pp 133–150

    Google Scholar 

  • Nogales M, Delgado JD, Medina FM (1998) Shrikes, lizards and Lycium intricatum (Solanaceae) fruits: a case of indirect seed dispersal on an oceanic island (Alegranza, Canary Islands). J Ecol 86:866–871

    Article  Google Scholar 

  • Norstog K, Stevenson DW, Niklas KJ (1986) The role of beetles in the pollination of Zamia furfuracea L. fil. (Zamiaceae). Biotropica 18:300–306

    Article  Google Scholar 

  • Nyhagen DF, Kragelund C, Olesen JM, Jones CG (2001) Insular interactions between lizards and flowers: flower visitation by an endemic Mauritian gecko. J Trop Ecol 17:755–761

    Article  Google Scholar 

  • Oberprieler RG (1995a) The weevils (Coleoptera: Curculionoidea) associated with cycads 1. Classification, relationships and biology. In: Vorster P (ed) Third international conference on cycad biology: conservation through cultivation, vol 3. Cycad Society of South Africa, Stellenbosch, pp 295–365

    Google Scholar 

  • Oberprieler RG (1995b) The weevils (Coleoptera: Curculionoidea) associated with cycads. 2. Host specificity and implications for cycad taxonomy. In: Vorster P (ed) Third international conference on cycad biology: conservation through cultivation, vol 3. Cycad Society of South Africa, Stellenbosch, pp 335–365

    Google Scholar 

  • Olesen JM, Valido A (2003) Lizards as pollinators and seed dispersers: an island phenomenon. Trends Ecol Evol 18:177–181

    Article  Google Scholar 

  • Olsson M, Shine R, Ba’k-Olsson E (2000) Lizards as a plant’s ‘hired help’: letting pollinators in and seeds out. Biol J Linn Soc 71:191–202

    Google Scholar 

  • Oppenheimer JR (1968) Behavior and ecology of the white-faced capuchins (Cebus capucinus) on Barro Colorado Island, Canal Zone. Ph.D. thesis, University of Illinois, Urbana

    Google Scholar 

  • Pammel LH, King CM (1930) Honey plants of Iowa. Iowa Geol Surv Bull 7:892–894

    Google Scholar 

  • Paton DC, Ford HA (1977) Pollination by birds of native plants in South Australia. Emu 77:73–85

    Article  Google Scholar 

  • Pellmyr O (1992) The phylogeny of a mutualism: evolution and coadaptation between Trollius and its seed-parasitic pollinators. Biol J Linn Soc 47:337–365

    Article  Google Scholar 

  • Pérez-Mellado V, Casas J (1997) Pollination by a lizard on a Mediterranean island. Copeia 1997:593–595

    Article  Google Scholar 

  • Perrier de la Bathie H (1951) Flore de Madagascar et de Comores. Firmin-Didot, Paris, pp 1–96, 136e famille

    Google Scholar 

  • Pole M, Douglas B (1999) Plant macrofossils of the Upper Cretaceous Kaitangata Coalfield, New Zealand. Aust Syst Bot 12:331–364

    Article  Google Scholar 

  • Pont AC (1993) Observations on anthophilous Muscidae and other Diptera in Abisko National Park, Sweden. J Nat Hist 27:631–643

    Article  Google Scholar 

  • Porsch O (1934) Saugetiere als Blumenausbeuter und die Frage der Saugetierblume. Biol Gen 10:657–685

    Google Scholar 

  • Porsch O (1935) Saugetiere als Blumenausbeuter und die Frage der Saugetierblume II. Biol Gen 11:171–188

    Google Scholar 

  • Porsch O (1936) Saugetiere als Blumenausbeuter und die Frage der Saugetierblume HI. Biol Gen 12:1–21

    Google Scholar 

  • Pough FH, Andrews RM, Cadle JE, Crump ML, Savitzky AH, Wells KD (1998) Herpetology. Prentice Hall, New Jersey, xi  +  577 pp

    Google Scholar 

  • Prance GT (1980) A note on the probable pollination of Combretum [lanceolatum] by Cebus monkeys. Biotropica 12(3):239

    Article  Google Scholar 

  • Prescott-Allen R, Prescott-Allen C (1990) How many plants feed the world. Conserv Biol 4:365–374

    Article  Google Scholar 

  • Primack RB (1978) Variability in New Zealand montane and alpine pollinator assemblages. N Z J Ecol 1:66–73

    Google Scholar 

  • Primack RB (1983) Insect pollination in the New Zealand mountain flora. N Z J Bot 21:317–333

    Article  Google Scholar 

  • Proctor M, Yeo P (1973) The pollination of flowers. Collins, London, 418 pp. Ann Miss Bot Gard 61:770–80

    Google Scholar 

  • Proctor M, Yeo P, Lack D (1996) The natural history of pollination. Timber Press, Portland

    Google Scholar 

  • Raju AJS (2005) Passerine bird pollination and seed dispersal in Woodfordia floribunda Salisb. (Lythraceae), a common low altitude woody shrub in the Eastern Ghats forests of India. Ornithol Sci 4(2):103–108

    Article  Google Scholar 

  • Ramirez WB (1974) Coevoution of Ficus and Agaonidae. Ann Mo Bot Gard 61:770–780

    Google Scholar 

  • Raven PH (1972) Why are bird-visited flowers predom-inantly red? Evolution 26:674

    Article  Google Scholar 

  • Raven PH (1977) Erythrina symposium II. Erythrina (Fabaceae: Faboideae): introduction to symposium II. Lloydia 40:401–406

    Google Scholar 

  • Reed EM (1970) Thysanoptera. In: The insects of Australia. Melbourne University Press, Melbourne, pp 458–464, 1029 pp

    Google Scholar 

  • Riek EF (1963) Insects of Australia. Jacaranda Pocket Guides, Jacaranda Press, Brisbane, 129 pp

    Google Scholar 

  • Riek EF (1970) Hymenoptera. In: The insects of Australia. Melbourne University Press, Melbourne, pp 867–959, 1029 pp

    Google Scholar 

  • Robinson AH (1947) Spinebill honeyeaters and Dryandra nivea. W Aust Nat 1:67

    Google Scholar 

  • Roubik DW (ed) (1995) Pollination of cultivated plants in the tropics. Food and Agricultural Organization of the United Nations, Rome, Bulletin 118

    Google Scholar 

  • Rourke J, Wiens D (1977) Convergent floral evolution in South African and Australian Proteaceae on pollination by nonflying mammals. Ann Mo Bot Gard 64:1–17

    Article  Google Scholar 

  • Sáez E, Traveset A (1995) Fruit and nectar feeding by Podarcis lilfordi (Lacertidae) on Cabrera Archipielago (Balearic Islands). Herpetol Rev 26:121–123

    Google Scholar 

  • Sanderson MJ, Doyle JA (2001) Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. Am J Bot 88(8):1499–1516

    Article  PubMed  CAS  Google Scholar 

  • Sarma K, Tandon R, Shivanna KR, Mohan Ram HY (2007) Snail-pollination in Volvulopsis nummularium. Curr Sci 93(6):827–831

    Google Scholar 

  • Schneider F (1969) Bionomics and physiology of aphidophagous Syrphidae. Annu Rev Entomol 14:103

    Article  Google Scholar 

  • Schupp EW (1993) Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 107/108:15–29

    Google Scholar 

  • Sun G, Dilcher DL, Zheng S, Zhou Z (1998) In search of the first flower: a Jurassic angiosperm, archaefructus, from Northeast China. Science 282(5394):1692–1695

    Article  PubMed  CAS  Google Scholar 

  • Symmington B (1963) Calectasia cyanea R. Br. unpublished biological flora of Western Australia, Botany Department, University of Western Australia

    Google Scholar 

  • Terry LI (2001) Thrips and weevils as dual, specialist pollinators of the Australian cycad Macrozamia communis (Zamiaceae). Int J Plant Sci 162:1293–1305

    Article  Google Scholar 

  • Thien LB, Azuma S, Kawano S (2000) New perspectives on the pollination biology of basal angiosperms. Int J Plant Sci 161:225–235

    Article  Google Scholar 

  • Thomas BA, Spicer RA (1987) The evolution and palaeobiology of land plants. Croom Helm, London

    Google Scholar 

  • Traveset A (1990) Ctenosaura similis Gray (Iguanidae) as a seed dispersel in a Central American deciduous forest. Am Midl Nat 123:402–404

    Google Scholar 

  • Traveset A (1995) Seed dispersal of Cneorum tricoccon L. (Cneoraceae) by lizards and mammals in the Balearic islands. Acta Oecol 16:171–178

    Google Scholar 

  • Traveset A, Sáez E (1997) Pollination of Euphorbia dendroides by lizards and insects: spatio-temporal variation in patterns of flower visitation. Oecologia 111:241–248

    Google Scholar 

  • Valido A, Nogales M (1994) Frugivory and seed dispersal by the lizard Gallotia galloti (Lacertidae) in a xeric habitat of the Canary Islands. Oikos 70:403–411

    Article  Google Scholar 

  • van der Pijl L (1957) The dispersal of plants by bats (Cheiropterochory). Acta Bot Ned 6:291–315

    Google Scholar 

  • Van Der Pijl L, Dodson C (1966) Orchid flowers: their pollination and evolution. University of Miami Press, Coral Gables, 214 p

    Google Scholar 

  • Van Marken LWD (1993) Optimal foraging of an herbivorous lizard, the green iguana in a seasonal environment. Oecologia 95:246–256

    Article  Google Scholar 

  • Varela OR, Bucher EH (2002) The lizard Teius teyou (Squamata: Teiidae) as a legitimate seed disperser in the dry Chaco Forest of Argentina. Stud Neotrop Fauna Environ 37:115–117

    Article  Google Scholar 

  • Vasconcellos-Neto J, Alt De Souza M, Guimaráes M, De Faria DM (2000) Effects of color, shape and location on detection of cactus fruits by a lizard. J Herpetol 34:306–309

    Article  Google Scholar 

  • Vogel S (1954) Blütenbiologische Typen als Elemente der Sippengliederung: dargestellt anhand de Flora Süd Afrikas. Botanische Studien 1:1–338

    Google Scholar 

  • Wallace MMH, Mackerras IM (1970) The entognathous hexapods. In: The insects of Australia. Melbourne University Press, Melbourne, pp 205–216, 1029

    Google Scholar 

  • Webber AC, Gottsberger G (1995) Floral biology and pollination of Bocageopsis multiflora and Oxandra euneura in Central Amazonia, with remarks on the Evolution of stamens in Annonaceae. Feddes Repertorium 106:515–524

    Article  Google Scholar 

  • Wheelwright NJT, Orians GH (1982) Seed dispersal by animals: contrasts with pollen dispersal, problems of terminology, and constraints on coevolution. Am Nat 119:402–413

    Article  Google Scholar 

  • Whitaker AH (1987) The roles of lizards in New Zealand plant reproductive strategies. N Z Bot 25:315–328

    Article  Google Scholar 

  • Whiting MJ, Greeff JM (1997) Facultative frugivory in the Cape flat lizard, Platysaurus capensis (Sauria: Cordylidae). Copeia 1997:811–818

    Article  Google Scholar 

  • Wiens D, Rourke JP (1978) Rodent pollination in southern African Protea spp. Nature 276(5683):71–73

    Article  Google Scholar 

  • Williams G, Adams P, Mound LA (2000) Thrips (Thysanoptera) pollination in Australian subtropical rainforests, with particular reference to pollination of Veiny Wilkiea, Wilkiea huegeliana (Tul.) A. DC. (Monimiaceae). J Nat Hist 35:1–21

    Article  Google Scholar 

  • Willis JC, Burkill IH (1895) Flowers and insects in Great Britain. I. Ann Bot 9:227–273

    Google Scholar 

  • Willson MF, Sabag C, Figueroa JA, Armesto JJ, Caviedes M (1996) Seed dispersal by lizards in Chilean rainforest. Revista Chilena de Historia Natural 69:339–342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharam P. Abrol .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abrol, D.P. (2012). Non Bee Pollinators-Plant Interaction. In: Pollination Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1942-2_9

Download citation

Publish with us

Policies and ethics