Skip to main content

Consequences of Introduced Honeybees Upon Native Bee Communities

  • Chapter
  • First Online:
Pollination Biology

Abstract

Biological invasions represent both an increasingly important applied problem and a tool for gaining insight into the structure of ecological communities. Although competitive interactions between invasive and native species are considered among the most important mechanisms driving invasion dynamics, such interactions are in general poorly understood. The European honey bee (Apis mellifera) is a widespread and economically important invader that now has a near-global distribution long suspected to competitively suppress many native bee species. Besides, various bumblebees (Bombus sp.), the alfalfa leafcutter bee Megachile rotundata, and various other solitary species have been introduced to countries far beyond their home range. Possible negative consequences of these introductions include: competition with native pollinators for floral resources; competition for nest sites; co-introduction of natural enemies, particularly pathogens that may infect native organisms; pollination of exotic weeds; and disruption of pollination of native plants. Interspecific competition for a limited resource can result in the reduction of survival, growth and/or reproduction in one of the species involved. As the impact of honey bees on native bees depends on the resource quality and quantity, it is recommended to assess the habitat quality in relation to its fauna by experts before any introduction of bee hives to deduce the number of hives, which can be introduced with a minimum impact. Thomson (Ecology 85:458–470, 2004) reported that Bombus occidentalis colonies exposed to competition with Apis experienced increased nectar scarcity and responded by reallocating foragers from pollen to nectar collection, resulting in lowered rates of larval production. These results provide evidence that Apis competitively suppresses a native social bee known to be an important pollinator, with the potential for cascading effects on native plant communities. Likewise introduction of Apis mellifera eliminated Apis cerana japonica in China and Japan and Apis cerana indica in Indian subcontinent including India, Pakistan, Nepal, Bangladesh and other neighbouring countries. How Apis influences native communities is of particular interest in light of both growing concerns over declines of many native pollinator species and uncertainty about the implications of disease-driven Apis declines and the spread of Africanized Apis strains. Negative impacts of exotic bees need to be carefully assessed before further introductions are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aballay FE, Ruiz M, Maraboli A, Arretz VP (1986) Analysis of the establishment in Chile of Bombus ruderatus (F.) introduced for red clover (Trifolium pratense L.) pollination. Invest Agric 9(1):31–36

    Google Scholar 

  • Abrahamovich AH, Telleria MC, Dıaz NB (2001) Bombus species and their associated flora in Argentina. Bee World 82:76–87

    Google Scholar 

  • Abrol DP (2001) Import – export policy of honey bees and other pollinators. Indian Bee J 63(3&4):55–58

    Google Scholar 

  • Abrol DP (2009) Bees and beekeeping in India, 2nd edn. Kalyani Publishers Ludhiana, India, 719pp

    Google Scholar 

  • Abrol DP, Ball BV (2006) New record of European foul brood (EFB) – a bacterial disease of ­honeybee Apis mellifera L. in Jammu, India. J Res SKUAST-J 5(2):256–260

    Google Scholar 

  • Ahmad F, Partap U (2000) Indigenous honeybee of the Himalayas: a community based approach to conserving biodiversity and increasing farm productivity. Six Monthly Progress Report ­(Jan-June 2000). ICIMOD, Kathmandu, Nepal

    Google Scholar 

  • Aizen MA, Feinsinger P (1994) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75:330–351

    Article  Google Scholar 

  • Akre RD, MacDonald JF (1986) Biology, economic importance and control of yellow jackets. In: Vinson, S.B. (ed). Economic Impact and Control of Social Insects. Praeger, New York

    Google Scholar 

  • Alexander N (ed) (1996) Australia: state of the environment 1996. Melbourne, CSIRO, 78pp

    Google Scholar 

  • Allen MF, Ball BV, Underwood BA (1990) An isolation of Melissococcus pluton from Apis laboriosa. J Invertebr Pathol 55:439–440

    Article  Google Scholar 

  • Allsopp MH (1993) Summarized overview of the Capensis problem. S Afr Bee J 65:127–136

    Google Scholar 

  • Anderson JME (1989) Honeybees in natural ecosystems. In: Noble JC, Bradstock RA (eds) Mediterranean landscapes in Australia: Mallee ecosystems and their management. CSIRO, East Melbourne, pp 300–304

    Google Scholar 

  • Arizmendi MC, Dominguez CA, Dirzo R (1995) The role of an avian nectar robber and of hummingbird pollinators in the reproduction of two plant species. Funct Ecol 10:119–127

    Article  Google Scholar 

  • Armstrong JA (1979) Biotic pollination mechanisms in the Australian flora – a review. NZ J Bot 17:467–508

    Article  Google Scholar 

  • Arretz PV, Macfarlane RP (1986) The introduction of Bombus ruderatus to Chile for red clover pollination. Bee World 67:15–22

    Google Scholar 

  • Barthell JF, Thorp RW (1995) Nest usurpation among females of an introduced leaf-cutter bee, Megachile apicalis. Southwest Entomol 20:117–124

    Google Scholar 

  • Barthell JF, Frankie GW, Thorp RW (1998) Invader effects in a community of cavity nesting megachilid bees (Hymenoptera: Megachilidae). Environ Entomol 27:240–247

    Google Scholar 

  • Barthell JF, Randall JM, Thorp RW, Wenner AM (2001) Promotion of seed set in yellow star thistle by honey bees: evidence of an invasive mutualism. Ecol Appl 11:1870–1883

    Article  Google Scholar 

  • Batra SWT (1979) Osmia cornifrons and Pithitis smaragulda, two Asian bees introduced into the United States for crop pollination. In: MC Dewey (ed) Proceedings of IV international symposium pollination, College Park, University of Maryland Agricultural Experiment Station Special Miscellaneous Publication I, pp 79–83

    Google Scholar 

  • Batra SWT (1982) Biological control in agroecosystems. Science 25:134–139

    Article  Google Scholar 

  • Bohart GE (1972) Management of wild bees for the pollination of crops. Annu Rev Entomol 17:287–312

    Article  Google Scholar 

  • Buchmann SL (1996) Competition between honey bees and native bees in the Sonoran Desert and global bee conservation issues. See Matheson et al. 1996, pp 125–142

    Google Scholar 

  • Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island, Washington, DC

    Google Scholar 

  • Burd M (1994) Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Article  Google Scholar 

  • Butler MJ, Stein RA (1985) An analysis of the mechanisms governing species replacements in crayfish. Oecologia 66:168–177

    Google Scholar 

  • Buttermore RE (1997) Observations of successful Bombus terrestris (L.) (Hymenoptera: Apidae) colonies in southern Tasmania. Aust J Entomol 36:251–254

    Article  Google Scholar 

  • Butz Huryn VM (1997) Ecological impacts of introduced honey bees. Q Rev Biol 72:275–297

    Article  Google Scholar 

  • Butz Huryn VM, Moller H (1995) An assessment of the contribution of honeybees (Apis mellifera) to weed reproduction in New Zealand protected natural areas. NZ J Ecol 19:111–122

    Google Scholar 

  • Cane JH, Payne JA (1988) Foraging ecology of the bee Habropoda laboriosa (Hymenoptera: Anthophoridae), an oligolege of blueberries (Ericaceae: Vaccimium) in the southeastern United States. Ann Entomol Soc Am 81:419–427

    Google Scholar 

  • Cardale JC (1993) Hymenoptera: Apoidea. In: Houston WWK, Maynard GV (eds) Zoological catalogue of Australia, vol 10. Australian Government Publishing Service, Canberra

    Google Scholar 

  • Carpenter FL (1978) A spectrum of nectar-eater communities. Am Zool 18:809–819

    Google Scholar 

  • Chittka L, Ings TC, Raine NE (2004) Chance and adaptation in the Evolution of island bumblebee behaviour. Popul Ecol 46:243–251

    Article  Google Scholar 

  • Choi SY (1984) Brief report on the status of Korean Beekeeping. Proceedings of the Expert Consultation (ed) FAG, pp 170–190

    Google Scholar 

  • Cobey S (1999) The new world Carniolan closed population breeding project. In: Proceeding of 36th Apimondia Congress Vancouver, Canada, Apimondia Publication House, Bucharest, pp 26–27

    Google Scholar 

  • Common Wealth of Australia (1997) The national weeds strategy. Commonwealth of Australia, Canberra

    Google Scholar 

  • Cooper KW (1984) Discovery of the first resident population of the European bee, Megachile apicalis, in the United States (Hymenoptera: Megachilidae). Entomol News 95:225–226

    Google Scholar 

  • Corbet SA, Fussell M, Ake R, Fraser A, Gunson C et al (1993) Temperature and the pollinating activity of social bees. Ecol Entomol 18:17–30

    Article  Google Scholar 

  • Corbet SA, Saville NM, Fussell M, Prys-Jones OE, Unwin DM (1995) The competition box: a graphical aid to forecasting pollinator performance. J Appl Ecol 32:707–719

    Article  Google Scholar 

  • Crane E (1990) Bees and beekeeping: science, practice, and world resources. Cornell University Press, Comstock/Ithaca

    Google Scholar 

  • Crane E (1992) The past and present status of beekeeping with stingless bees. Bee World 73:29–42

    Google Scholar 

  • Dafni A (1998) The threat of Bombus terrestris spread. Bee World 79:113–114

    Google Scholar 

  • Dafni A, Shmida A (1996) The possible ecological implications of the invasion of Bombus terrestris (L.) (Apidae) at Mt. Carmel, Israel. In: Matheson A (ed) The conservation of bees. The Linnean Society of London and The International Bee Research Association, London, pp 183–200

    Google Scholar 

  • Daly HV, Bohart GE, Thorp RW (1971) Introduction of small carpenter bees in California for pollination. I. Release of Pithitis smaragulda. J Econ Entomol 64:1145–1150

    Google Scholar 

  • Deodikar GB (1971) Code of conduct for conservation of bees and beekeeping. Indian Bee J 33(1/2):14–22

    Google Scholar 

  • Diwan VV (1971) Occurrence of a new bacterial disease of Indian honeybees Apisindica F., Curr. Science 40:196–197

    Google Scholar 

  • Dobson HEM (1993) Bee fauna associated with shrubs in 2 California chaparral communities. Pan-Pac Entomol 69:77–94

    Google Scholar 

  • Dochkova B (1984) [Studies on the economic importance of Megachile rotunda (Hymenoptera, Megachilidae)]. Rastenievudni Nauki 21:116–121

    Google Scholar 

  • Donovan BJ (1975) Introduction of new bee species for pollinating lucerne. Proc NZ Grasslands Assoc 36:123–128

    Google Scholar 

  • Donovan BJ (1979) Importation, establishment and propagation of the alkali bee Nomia melanderi Cockerell (Hymenoptera: Halictidae) in New Zealand. In: Proceedings of 4th International Symposium on Pollination, Maryland Agricultural Experiment Station Special Miscellaneous Publication, Maryland, 1:257–268

    Google Scholar 

  • Donovan BJ (1980) Interactions between native and introduced bees in New Zealand. NZ J Ecol 3:104–116

    Google Scholar 

  • Donovan BJ (1990) Selection and importation of new pollinators to New Zealand. NZ Entomol 13:26–32

    Google Scholar 

  • Donovan BJ, Wier SS (1978) Development of hives for field population increase, and studies on the life cycles of the four species of introduced bumble bees in New Zealand. NZ J Agric Res 21:733–756

    Article  Google Scholar 

  • Dornhaus A, Chittka L (1999) Insect behaviour: evolutionary origins of bee dances. Nature 401:38

    Article  CAS  Google Scholar 

  • Doull K (1973) Bees and their role in pollination. Aust Plants 7:223–236

    Google Scholar 

  • Dunning JW (1886) The importation of humble bees into New Zealand. Trans R Entomol Soc London 6:32–34

    Google Scholar 

  • Eickwort GC, Ginsberg HS (1980) Foraging and mating behaviour in Apoidea. Annu Rev Entomol 25:421–426

    Article  Google Scholar 

  • Estoup A, Solignac M, Cornuet JM, Goudet J, Scholl A (1996) Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Mol Ecol 5:19–31

    Article  PubMed  CAS  Google Scholar 

  • Evans JD, Pettis JS, Shimanuki H (2000) Mitochondrial DNA relationships in an emergent pest of honey bees: Aethina tumida (Coleoptera: Nitidulidae) from the United States and Africa. Ann Entomol Soc Am 93:415–420

    Article  CAS  Google Scholar 

  • Francoy TM, Wittmann D, Drauschke S, Müller S, Steinhage V et al (2008) Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures. Apidologie 39(5):488–494

    Article  Google Scholar 

  • Frankie GW, Thorp RW, Newstrom-Lloyd LE, Rizzardi MA, Barthell JF et al (1998) Monitoring solitary bees in modified wildland habitats: implications for bee ecology and conservation. Environ Entomol 27:1137–1148

    Google Scholar 

  • Freitas BM, Paxton RJ (1998) A comparison of two pollinators: the introduced honey bee Apis mellifera and an indigenous bee Centris tarsata on cashew Anacardium occidentale in its native range of NE Brazil. J Appl Ecol 35:109–121

    Article  Google Scholar 

  • Galen C (1983) The effects of nectar thieving ants on seedset in floral scent morphs of Polemonium viscosum. Oikos 41:245–249

    Article  Google Scholar 

  • Gatoria GS, Chhunneja PK, Singh D (2000) Import of pollinator, package bees, quieen bees and associated problems. Indian Bee J 62:1–9

    Google Scholar 

  • Ge F, Xye YB, Nie QS (2000) Natural recovery of Chinese bee populations of Changbai Mountains. In: Matsuka (ed) Asian bees and beekeeping. Oxford and IBH Publishing Co. Ltd, New Delhi, pp. 26

    Google Scholar 

  • Gilliam M (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol Lett 155:1–10

    Article  CAS  Google Scholar 

  • Gilliam M, Taber S (1991) Diseases, pests, and normal microflora of honeybees, Apis mellifera, from feral colonies. J Invertebr Pathol 58:286–289

    Article  Google Scholar 

  • Gilliam M, Lorenz BJ, Prest DB, Camazine S (1993) Ascosphaera apis from Apis cerana from South Korea. J Invertebr Pathol 61:111–112

    Article  Google Scholar 

  • Gilliam M, Lorenz BJ, Buchmann SL (1994) Ascosphaera apis, the chalkbrood pathogen of the honeybee, Apis mellifera, from larvae of a carpenter-bee, Xylocopa californica arizonensis. J Invertebr Pathol 63:307–309

    Article  Google Scholar 

  • Ginsberg HS (1983) Foraging ecology of bees in an old field. Ecology 64:165–175

    Article  Google Scholar 

  • Goerzen DW (1991) Microflora associated with the alfalfa leafcutting bee, Megachile rotundata (Fab) (Hymenoptera, Megachilidae) in Saskatchewan, Canada. Apidologie 22:553–561

    Article  Google Scholar 

  • Goerzen DW, Erlandson MA, Bissett J (1990) Occurrence of chalkbrood caused by Ascosphaera aggregata Skou in a native leafcutting bee, Megachile relativa Cresson (Hymenoptera, Megachilidae), in Saskatchewan. Can Entomol 122:1269–1270

    Article  Google Scholar 

  • Goerzen DW, Dumouchel L, Bissett J (1992) Occurrence of chalkbrood caused by Ascosphaera aggregata Skou in a native leafcutting bee, Megachile pugnata Say (Hymenoptera, Megachilidae), in Saskatchewan. Can Entomol 124:557–558

    Article  Google Scholar 

  • Goka K, Okabe K, Yoneda M, Niwa S (2001) Bumblebee commercialization will cause worldwide migration of parasitic mites. Mol Ecol 10:2095–2099

    Article  PubMed  CAS  Google Scholar 

  • Goulson D (1999) Foraging strategies for gathering nectar and pollen in insects. Perspect Plant Ecol Evol Syst 2:185–209

    Article  Google Scholar 

  • Goulson D, Hanley ME (2004) Distribution and forage use of exotic bumblebees in South Island, New Zealand. NZ J Ecol 28:225–232

    Google Scholar 

  • Goulson D, Stout JC (2001) Homing ability of bumblebees; evidence for a large foraging range? Apidologie 32:105–112

    Article  Google Scholar 

  • Goulson D, Ollerton J, Sluman C (1997) Foraging strategies in the small skipper butterfly, Thymelicus flavus; when to switch? Anim Behav 53:1009–1016

    Article  Google Scholar 

  • Goulson D, Stout JC, Kells AR (2002) Do alien bumblebees compete with native flower visiting insects in Tasmania? J Insect Conserv 6:179–189

    Article  Google Scholar 

  • Gross CL (2001) The effect of introduced honeybees on native bee visitation and fruit-set in Dillwynia juniperina (Fabaceae) in a fragmented ecosystem. Biol Conserv 102:89–95

    Article  Google Scholar 

  • Gross CL, Mackay D (1998) Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae). Biol Conserv 86:169–178

    Article  Google Scholar 

  • Hall DR, Cork A, Lester A (1987) Identification and role of female pheromone. J Chem Ecol 13:1575–1589

    Google Scholar 

  • Heinrich B (1979) Bumblebee economics. Harvard University Press, Cambridge

    Google Scholar 

  • Heinrich B, Raven PH (1972) Energetics and pollination ecology. Science 176:597–602

    Article  PubMed  CAS  Google Scholar 

  • Hingston AB, McQuillan PB (1999) Displacement of Tasmanian native megachilid bees by the recently introduced bumblebee Bombus terrestris (Linnaeus, 1758) (Hymenoptera: Apidae). Aust J Zool 47:59–65

    Article  Google Scholar 

  • Hingston AB, Marsden-Smedley J, Driscoll DA, Corbett S, Fenton J, Anderson R, Plowman C, Mowling F, Jenkin M, Matsui K, Bonham KJ, Ilowski M, McQuillin PB, Yaxley B, Reid T, Storey D, Poole L, Mallick SA, Fitzgerald N, Kirkpatrick LB, Febey J, Harwood AG, Michaels KF, Russell MJ, Black PG, Emmerson L, Visoiu M, Morgan J, Breen S, Gates S, Bantich MN, Desmarchelier JM (2002) Extent of invasion of Tasmanian native vegetation by the exotic bumblebee Bombus terrestris (Apoidea: Apidae). Aust Ecol 27:162–172

    Article  Google Scholar 

  • Holmes FO (1964) The distribution of honey bees and bumblebees on nectar secreting plants. Am Bee J January:12–13

    Google Scholar 

  • Hopkins I (1911) Australasian bee manual. Gordon and Gotch, Wellington, 173pp

    Google Scholar 

  • Hopkins I (1914) History of the bumblebee in New Zealand: its introduction and results. NZ Dept Agric Ind Commer 46:1–29

    Google Scholar 

  • Hopper SD (1987) Impact of honeybees on Western Australia’s nectarivorous fauna. In: Blyth J (ed) Beekeeping and land management. Western Australia CALM, Albany, pp 59–71

    Google Scholar 

  • Horskins K, Turner VB (1999) Resource use and foraging patterns of honeybees, Apis mellifera, and native insects on flowers of Eucalyptus costata. Aust J Ecol 24:221–227

    Article  Google Scholar 

  • Inoue MN, Yokoyama J, Washitani I (2007) Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J Insect Conserv 10

    Google Scholar 

  • Inouye DW (1983) The ecology of nectar robbing. In: Elias TS, Bentley B (eds) The biology of nectarines. Columbia University Press, New York, pp 152–173

    Google Scholar 

  • Irwin RE, Brody AK (1999) Nectar-robbing bumble bees reduce the fitness of Ipomopsis aggregata (Polemoniaceae). Ecology 80:1703–1712

    Google Scholar 

  • Jay SC, Dixon D (1982) Nosema disease in package honeybees, queens and attendant workers shipped to western Canada. J Apic Res 21(4):216–221

    Google Scholar 

  • Kato M (1993) Impacts of the introduction of Bombus terrestris colonies upon pollination mutualism in Japan. Honeybee Sci 14:110–114 (in Japanese)

    Google Scholar 

  • Kato M, Shibata A, Yasui T, Nagamasu H (1999) Impact of introduced honeybees, Apis mellifera, upon native bee communities in the Bonin (Ogasawara) Islands. Res Popul Ecol 2:217–228

    Google Scholar 

  • Kevan PG, Laverty TM (1990) A brief survey and caution about importing alternative pollinators into Canada. Varroa can survive outside the hive and away from honey bees. Can Beekeep 15:176–177

    Google Scholar 

  • Koeniger N (1982) Interactions among the four species of Apis. In: Breed MD (ed) Biology of socialinsects. Westview Press, Boulder

    Google Scholar 

  • Korpela S, Fakhimzadeh K (1991) Tracheal mites in Finland. Am Bee J 131(9):587–588

    Google Scholar 

  • Kshirsagar KK, Chauhan RM, Singh YK (1981) Occurrence of sac brood disease in Apis cerana Fab. Indian Bee J 43(2):44

    Google Scholar 

  • Kunitake Y, Goka K (2006) Environmental risk assessment and management decisions for introduced insects – legal controls on Bombus terrestris by Invasive Alien Species Act. Jpn J Plant Protect 60:196–197 (in Japanese)

    Google Scholar 

  • Leigh EG Jr, Vermeij GJ, Wikelski M (2009) What do human economies, large islands and forest fragments reveal about the factors limiting ecosystem evolution? J Evol Biol 22(1):1–12

    Article  PubMed  Google Scholar 

  • Liu TP (1991) Virus-like particles in the tracheal mite Acarapis woodi (Rennie). Apidologie 22:213–219

    Article  Google Scholar 

  • Liu TP, Nelson DL, Collins MM (1987) Amoeba- and nosema-infected queen honeybees and worker attendants shipped in mailing cages to western Canada. J Apic Res 26:56–58

    Google Scholar 

  • Low T (1999) Feral future. Penguin, Ringwood

    Google Scholar 

  • Macfarlane RP (1976) Bees and pollination. In: Ferro DN (ed) New Zealand insect pests. Lincoln University Collage of Agriculture, New Zealand, pp 221–229

    Google Scholar 

  • MacFarlane RP, Gurr L (1995) Distribution of bumble bees in New Zealand. NZ Entomol 18:29–36

    Google Scholar 

  • Mal TK, Lovett-Doust J, Lovett-Doust L, Mulligan GA (1992) The biology of Canadian weeds. 100. Lythrum salicaria. Can J Plant Sci 72:1305–1330

    Article  Google Scholar 

  • Mangum WA, Brooks RW (1997) First records of Megachile (Callomegachile) sculpturalis Smith (Hymenoptera: Megachilidae) in the continental United States. J Kans Entomol Soc 70:140–142

    Google Scholar 

  • Matsumura C, Yokoyama J, Washitani I (2004) Invasion status and potential impacts of an invasive alien bumblebee, Bombus terrestris L. (Hymenoptera: Apidae) naturalized in southern Hokkaido, Japan. Global Environ Res 8:51–66

    Google Scholar 

  • Matthews E (1984) To bee or not? Bees in National Parks – the introduced honeybee in conservation parks in South Australia. Magazine of South Australian National Parks Association, Adelaide, pp 9–14

    Google Scholar 

  • McDade LA, Kinsman S (1980) The impact of floral parasitism in two neotropical hummingbird-pollinated plant species. Evolution 34:944–958

    Article  Google Scholar 

  • McFarlane RP, Grundell JM, Dugdale JS (1992) Gorse on the Chatham islands: seed formation, arthropod associates and control. In: Proceedings of the 45th New Zealand plant protection conference, pp 251–255

    Google Scholar 

  • McGregor SE, Alcorn EB, Kuitz EB Jr, Butler GD Jr (1959) Bee visitors to Saguaro flowers. J Econ Entomol 52:1002–1004

    Google Scholar 

  • McNally LC, Schneider SS (1996) Spatial distribution and nesting biology of colonies of the African honey bee Apis mellifera scutellata (Hymenoptera: Apidae) in Botswana. Afr Environ Entomol 25:643–652

    Google Scholar 

  • Menke HF (1954) Insect pollination in relation to alfalfa seed production in Washington. Wash Agric Exp Stn Bull 555:1–24

    Google Scholar 

  • Michener CD (1965) A classification of the bees of the Australian and South Pacific regions. Bull Am Mus Nat Hist 130:1–324

    Google Scholar 

  • Michener CD (1974) The social behavior of the bees: a comparative study, 2nd edn. Harvard University Press, Cambridge, 404 pp

    Google Scholar 

  • Michener CD (1979) Biogeography of bees. Ann Mo Bot Gard 66:277–347

    Article  Google Scholar 

  • Moller H, Tilley JAV (1989) Beech honeydew: seasonal variation and use by wasps, honey bees and other insects. NZ J Zool 16:289–302

    Article  Google Scholar 

  • Morris WF (1996) Mutualism denied? Nectar-robbing bumble bees do not reduce female or male success of bluebells. Ecology 77:1451–1462

    Article  Google Scholar 

  • Newton SD, Hill GD (1983) Robbing of field bean flowers by the short-tongued bumble bee Bombus terrestris L. J Apicult Res 22:124–129

    Google Scholar 

  • O’Toole C, Raw A (1991) Bees of the world. Blandford, London

    Google Scholar 

  • Oldroyd BP, Lawler SH, Crozier RH (1994) Do feral honey-bees (Apis mellifera) and regent parrots (Polytelis anthopeplus) compete for nest sites. Aust J Ecol 19:444–450

    Article  Google Scholar 

  • Oldroyd BP, Smolenski A, Lawler S, Estoup A, Crozier R (1995) Colony aggregations in Apis mellifera L. Apidologie 26:119–130

    Article  Google Scholar 

  • Oldroyd BP, Thexton EG, Lawler SH, Crozier RH (1997) Population demography of Australian feral bees (Apis mellifera). Oecologia 111:381–387

    Article  Google Scholar 

  • Ono M (1998) Why is now the bumblebees? Nat Insects 33:2–3 (in Japanese)

    Google Scholar 

  • Otis GW (1991) Population biology of the Africanized honey bee. See Spivak et al 1991, pp 213–234

    Google Scholar 

  • Parker FD (1981) A candidate for red clover, Osmia coerulescens L. J Apicult Res 20:62–65

    Google Scholar 

  • Parker FD, Torchio PF, Nye WP, Pedersen M (1976) Utilization of additional species and populations of leafcutter bees for alfalfa pollination. J Apicult Res 15:89–92

    Google Scholar 

  • Parker FD, Batra SWT, Tepedino VJ (1987) New pollinators for our crops. Agric Zool Rev 2:279–304

    Google Scholar 

  • Pascarella JB, Waddington KD, Neal PR (1999) The bee fauna (Hymenoptera: Apoidea) of Everglades National Park, Florida and adjacent areas: distribution, phenology, and biogeography. J Kans Entomol Soc 72:32–45

    Google Scholar 

  • Paton DC (1990) Budgets for the use of floral resources in mallee heath. In: Noble JC, Joss PJ, Jones GK (eds) The Mallee lands: a conservation perspective. CSIRO, Melbourne, pp 189–193

    Google Scholar 

  • Paton DC (1993) Honeybees in the Australian environment: does Apis mellifera disrupt or benefit the native biota? Bioscience 43:95–103

    Article  Google Scholar 

  • Paton DC (1995) Impact of honeybees on the flora and fauna of Banksia heathlands in Ngarkat Conservation Park. SASTA J 95:3–11

    Google Scholar 

  • Paton DC (1996) Overview of feral and managed honeybees in Australia: distribution, abundance, extent of interactions with native biota, evidence of impacts and future research. Australian Nature. Conservation Agency, Canberra

    Google Scholar 

  • Pearson WD, Braiden V (1990) Seasonal pollen collection by honeybees from grass shrub highlands in Canterbury, New Zealand. J Apicult Res 29:206–213

    Google Scholar 

  • Percival M (1974) Floral ecology of coastal scrub in Southeast Jamaica. Biotropica 6:104–129

    Article  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brookes TM (1995) The future of biodiversity. Science 269:347–350

    Article  PubMed  CAS  Google Scholar 

  • Pleasants JM (1981) Bumblebee response to variation in nectar availability. Ecology 62:1648–1661

    Article  Google Scholar 

  • Prys-Jones OE (1982) Ecological studies of foraging and life history in bumblebees. PhD thesis, University of Cambridge, UK

    Google Scholar 

  • Prys-Jones OE, Ólafsson E, Kristja’nsson K (1981) The Icelandic bumble bee fauna (Bombus Latr., Apidae) and its distributional ecology. J Apicult Res 20:189–197

    Google Scholar 

  • Pyke GH, Balzer L (1983) The effects of the introduced honeybee (Apis mellifera) on Australian native bees. Hawkesbury Agricultural College, Richmond, pp 18–22

    Google Scholar 

  • Pyke GH, Balzer L (1985) The effects of the introduced honey-bee on Australian native bees. In: NSW national parks wildland Service Occasional Paper No. 7

    Google Scholar 

  • Ramsey MW (1988) Differences in pollinator effectiveness of birds and insects visiting Banksia menziesii (Protaceae). Oecologia 76:119–124

    Google Scholar 

  • Reddy MS (1999) Revival of beekeeping in Karnataka. Beekeep Dev 52:14–15

    Google Scholar 

  • Richards KW, Krunic MD (1990) Introduction of alfalfa leafcutter bees to pollinate alfalfa in Yugoslavia. Entomologist 109(3):130–135

    Google Scholar 

  • Richardson DM, Allsop N, D’Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasions – the role of mutualisms. Biol Rev Cambr Philos Soc 75:65–93

    Article  CAS  Google Scholar 

  • Robertson P, Bennett AF, Lumsden LF, Silveira CE, Johnson PG, et al (1989) Fauna of the Mallee study area north-western Victoria. In: National parks wildland division technical Report Series, No. 87. Department of Conservation Forests, Lands, Victoria, pp 41–42

    Google Scholar 

  • Roubik DW (1978) Competitive interactions between neotropical pollinators an Africanized honeybees. Science 201:1030–1032

    Article  PubMed  CAS  Google Scholar 

  • Roubik DW (1980) Foraging behavior of commercial Africanized honeybees and stingless bees. Ecology 61:8336–8345

    Article  Google Scholar 

  • Roubik DW (1981) Comparative foraging behaviour of Apis mellifera and Trigona corvine (Hymenoptera: Apidae) on Baltimorarecta (Compositae). Rev Biol Trop 29:177–184

    Google Scholar 

  • Roubik DW (1982a) Ecological impact of Africanized honeybees on native neotropical pollinators. In: Jaisson P (ed) Social insects of the tropics. Universit´e Paris-Nord, Paris, pp 233–247

    Google Scholar 

  • Roubik DW (1982b) The ecological impact of nectar robbing bees and pollinating hummingbirds on a tropical shrub. Ecology 63:354–360

    Article  Google Scholar 

  • Roubik DW (1983) Experimental community studies: time-series tests of competition between African and neotropical bees. Ecology 64:971–978

    Article  Google Scholar 

  • Roubik DW (1988) An overview of Africanized honey-bee populations: reproduction, diet and competition. In: Needham GR, Page RE Jr, Delfinado-Baker M, Bowman C (eds) Africanized honey bees and bee mites. Westview, Boulder, pp 45–54

    Google Scholar 

  • Roubik DW (1989a) Ecology and natural history of tropical bees. Cambridge University Press, New York, p 514

    Book  Google Scholar 

  • Roubik DW (1989b) Ecology and natural history of tropical bees. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Roubik DW (1990) Niche preemption in tropical bee communities: a comparison of neotropical and Malesian faunas. In: Sakagami SF, Ohgushi R, Roubik DW (eds) Natural history of social wasps and bees in equatorial Sumatra. Hokkaido University Press, Sapporo, pp 245–257

    Google Scholar 

  • Roubik DW (1991) Aspects of Africanized honey bee ecology in tropical America. In: Spivak M, Breed MD, Fletcher DJC (eds) The African honey bee. Westview Press, Boulder, pp 147–158

    Google Scholar 

  • Roubik DW (1996a) Measuring the meaning of honey bees. In: Matheson A, Buchmann SL, O’toole C, Westrich P, Williams IH (eds) The conservation of bees. Academic Press, Ltd, London, pp 163–172

    Google Scholar 

  • Roubik DW (1996b) African honey bees as exotic pollinators in French Guiana. See Matheson et al 1996, pp 173–182

    Google Scholar 

  • Roubik DW (2009) Ecological impact on native bees by the invasive africanized honey bee. Acta Biol Colomb 14(2):23–29

    Google Scholar 

  • Roubik DW, Aluja M (1983) Flight ranges of Melipona and Trigona in tropical forests. J Kans Entomol Soc 56:217–222

    Google Scholar 

  • Roubik DW, Buchmann SL (1984) Nectar selection by Melipona and Apis mellifera (Hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical forest. Oecologia 61:1–10

    Article  Google Scholar 

  • Roubik DW, Wolda H (2001) Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Popul Ecol 43:53–62

    Article  Google Scholar 

  • Roubik DW, Schmalzel RJ, Moreno JE (1984) Estudio apibotanico de Panam´a: cosecha y fuentes de polen y nectar usados por Apis mellifera y sus patrones estacionales y anuales. In: Bol. T´ec. No. 24. Org. Int. Reg. Sanidad Agropecuaria Mex., Centro Am. Panama, 73 pp

    Google Scholar 

  • Roubik DW, Holbrook NM, Parrav G (1985) Roles of nectar robbers in reproduction of the tropical treelet Quassia amara (Simaroubaceae). Oecologia 66:161–167

    Google Scholar 

  • Roubik DW, Moreno JE, Vergara C, Wittman D (1986) Sporadic food competition with the African honey bee: projected impact on neotropical social species. J Trop Ecol 2:97–111

    Article  Google Scholar 

  • Ruz L, Herrera R (2001) Preliminary observations on foraging activities of Bombus dahlbomiiand Bombus terrestris (Hym: Apidae) on native and non-native vegetation in Chile. Acta Horticulturae 561:165–169

    Article  Google Scholar 

  • Sakagami SF (1959) Some interspecific relations between Japanese and European honeybees. J Anim Ecol 28:51–68

    Article  Google Scholar 

  • Sakai T (1992) Apis cerana beekeeping in Japan. In: Verma LR (ed) Honeybees in mountain agriculture. Oxford/IBH Publishing Co, New Delhi

    Google Scholar 

  • Saville, Naomi M (2000) Farmer-participatory extension in Jumla, Western Nepal. In: Matsuka M (ed) Asian bees and beekeeping: progress of research and development. Oxford/IBH, New Delhi, pp 230–236

    Google Scholar 

  • Schaffer WM, Jensen DB, Hobbs DE, Gurevitch J, Todd JR, Valentine SM (1979) Competition, foraging energetics, and the cost of sociality in three species of bees. Ecology 60:976–987

    Article  Google Scholar 

  • Schaffer WM, Zeh DW, Buchmann SL, Kleinhans S, Valentine Schaffer M, Antrim J (1983) Competition for nectar between introduced honey bees and native North American bees and ants. Ecology 64:564–577

    Article  Google Scholar 

  • Schemske DW (1983) Limits to specialization and coEvolution in plant-animal mutualisms. In: Nitecki MH (ed) CoEvolution. University of Chicago Press, Chicago, pp 67–109

    Google Scholar 

  • Schmitt D (1980) Pollinator foraging behaviour and gene dispersal in Senecio (Compositae). Evolution 34:934–943

    Article  Google Scholar 

  • Schrader M, Reid M (1986) Control of honey bee diseases and pests in New Zealand. Am Bee J 126(11):742–745

    Google Scholar 

  • Schwarz MP, Hurst PS (1997) Effects of introduced honey bees on Australia’s native bee fauna. Vic Nat 114:7–12

    Google Scholar 

  • Schwarz MP, Gross CL, Kukuk PF (1991) Assessment of competition between honeybees and native bees. Progress Report World Wildland Fund, Australian Project P158, July 1991

    Google Scholar 

  • Schwarz MP, Gross CL, Kukuk PF (1992a) Assessment of competition between honeybees and native bees. Progress Report World Wildland Fund, Australian Project P158, Jan 1992

    Google Scholar 

  • Schwarz MP, Gross CL, Kukuk PF(1992b) Assessment of competition between honeybees and native bees. Progress Report World Wildland Fund, Australian Project P158, July 1992

    Google Scholar 

  • Seeley TD (1985) The information-center strategy of honeybee foraging. Fortschritte der Zoologie 31:75–90

    Google Scholar 

  • Semmens TD (1996) Flower visitation by the bumble bee Bombus terrestris (L) (Hymenoptera: Apidae) in Tasmania. Aust Entomol 23:33–35

    Google Scholar 

  • Semmens TD, Turner E, Buttermore R (1993) Bombus terrestris (L) (Hymenoptera: Apidae) now established in Tasmania. J Aust Entomol Soc 32:346

    Article  Google Scholar 

  • Silander J, Primack R (1978) Pollination intensity and seed set in the evening primrose (Oenothera fruticosa). Am Midl Nat 100(1):213–216

    Google Scholar 

  • Singh S (1961) Appearance of American foul brood disease in Indian honey bee (Apis cerana indica Fabr.). Indian Bee J 23(7/9):46–50

    Google Scholar 

  • Stanley RG, Liskens HF (1974) Pollen: biology, biochemistry, management. Springer Verlag, Berlin

    Google Scholar 

  • Stanton ML (1987) Reproductive biology of petal color variants in wild populations of Raphanus sativus II: Factors limiting seed production. Am J Bot 74:188–196

    Article  Google Scholar 

  • Stephen WP (1987) Megachile (Eutricharea) apicalis, an introduced bee with potential as a domesticable alfalfa pollinator. J Kans Entomol Soc 60:583–584

    Google Scholar 

  • Stibick JNL (1984) Animal and plant health inspection service strategy and the African honey bee. Bull Entomol Soc Am 30:22–26

    Google Scholar 

  • Stimec J, ScottDupree CD, McAndrews JH (1997) Honey bee, Apis mellifera, pollen foraging in southern Ontario. Can Field-Nat 111:454–456

    Google Scholar 

  • Stout JC (2000) Does size matter? Bumblebee behaviour and the pollination of Cytisus scoparius L. (Fabaceae). Apidologie 31:129–139

    Article  Google Scholar 

  • Stout JC, Goulson D (2000) Bumble bees in Tasmania: their distribution and potential impact on Australian flora and fauna. Bee World 81:80–86

    Google Scholar 

  • Stout JC, Allen JA, Goulson D (2000) Nectar robbing, forager efficiency and seed set: bumblebees foraging on the self incompatible plant Linaria vulgaris Mill. (Scrophulariaceae). Acta Oecol 21:277–283

    Article  Google Scholar 

  • Stout JC, Kells AR, Goulson D (2002a) Pollination of the invasive exotic shrub Lupinus arboreus (Fabaceae) by introduced bees in Tasmania? Biol Conserv 106:425–434

    Article  Google Scholar 

  • Stout JC, Kells AR, Goulson D (2002b) Pollination of a sleeper weed, Lupinus arboreaus, by introduced bumblebees in Tasmania. Biol Conserv 106:425–34

    Article  Google Scholar 

  • Stubbs CS, Drummond FA, Osgood EA (1994) Osmia ribifloris biedermannii and Megachile rotundata (Hymenoptera: Megachilidae) introduced into the lowbush blueberry agroecosystem in Maine. J Kans Entomol Soc 67:173–185

    Google Scholar 

  • Sugden EA, Pyke GH (1991) Effects of honey bees on colonies of Exoneura asimillima, an Australian native bee. Aust J Ecol 16:171–181

    Article  Google Scholar 

  • Sugden EA, Thorp RW, Buchmann SL (1996) Honey bee native bee competition: focal point for environmental change and apicultural response in Australia. Bee World 77:26–44

    Google Scholar 

  • Switzer PV (1993) Site fidelity in predictable and unpredictable habitats. Evol Ecol 7:533–555

    Article  Google Scholar 

  • Taylor G, Whelan RJ (1988) Can honeybees pollinate Grevillea? Aust Zool 24:193–196

    Google Scholar 

  • Telleria MC (1993) Flowering and pollen collection by the honeybee (Apis mellifera L. var ligustica) in the Pampas region of Argentina. Apidologie 24:109–120

    Article  Google Scholar 

  • Tepedino VJ, Stanton NL (1981) Diversity and competition in bee-plant communities on short-grass prairie. Oikos 36:35–44

    Article  Google Scholar 

  • Thomson JD, Thomson BA (1992) Pollen presentation and viability schedules in animal pollinated plants: consequences for reproductive success. In: Wyatt R (ed) Ecology and evolution of plant reproduction: new approaches. Chapman and Hall, New York, pp 1–24

    Google Scholar 

  • Thorp RW (1987) World overview of the interactions between honeybees and other flora and fauna. In: Blyth JD (ed) Beekeeping and land management. Department of Conservation of Land Management, Como, pp 40–47

    Google Scholar 

  • Thorp RW, Wenner AM, Barthell JF (1994) Flowers visited by honeybees and native bees on Santa Cruz Island. See Halvorson and Maender 1994, pp 351–365

    Google Scholar 

  • Tierney SM (1994) Life cycle and social organization of two native bees in the subgenus Brevineura. Unpublished BSc (Hons) thesis, Flinders University South Australia

    Google Scholar 

  • Torchio PF (1987) Use of non-honey bee species as pollinators of crops. Proc Entomol Soc Ont 118:111–124

    Google Scholar 

  • Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451

    Article  Google Scholar 

  • Verma LR (1994) Honeybee pollination strategies for sustainable agriculture and conservation of biodiversity in Hindu Kush-Himalayan Region. In: Proceedings of regional conference. Environment and Biodiversity, Kathmandu, Nepal, 1994, pp 157–162

    Google Scholar 

  • Visscher PK, Seeley TD (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63:1790–1801

    Article  Google Scholar 

  • Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876

    Google Scholar 

  • Vogel S, Westerkamp C (1991) Pollination: an integrating factor of biocenoses. In: Seitz A, Loeschoke V (eds) Species conservation: a population-biological approach. Birkhäuser Verlag, Basel

    Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  • Waser NM (1982) A comparison of distances flown by different visitors to flowers of the same species. Oecologia 55:251–257

    Article  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Washitani I (1998) Conservation-ecological issues of the recent invasion of Bombus terrestris into Japan. Jpn J Ecol 48:73–78 (in Japanese)

    Google Scholar 

  • Washitani I, Morimoto N (1993) Alien plants and animals naturalized in Japan. Hoikusya, Tokyo (in Japanese)

    Google Scholar 

  • Washitani I, Suzuki K, Kato M, Ono M (1997) A field guide to bumblebees. Bun-ichi-sogo shuppan, Tokyo (in Japanese)

    Google Scholar 

  • Wenner AM, Thorp RW (1994) Removal of feral honey bee (Apis mellifera) colonies from Santa Cruz Island. See Halvorson and Maender 1994, pp 513–522

    Google Scholar 

  • Westerkamp C (1991) Honeybees are poor pollinators – 2 why? PI Syst Evol 177:71–75

    Article  Google Scholar 

  • Whitten M (1979) Genetics of the honey bee in Australia. Rockefeller Foundation, New York, USA

    Google Scholar 

  • Williams PA, Timmins SM. 1990. Weeds in New Zealand protected natural areas: a review for the Department of Conservation. Science Research Series No. 14, Department of Conservation, Wellington, 114 pp

    Google Scholar 

  • Wills RT, Lyons MN, Bell DT (1990) The European honey bee in Western Australian kwongan: foraging preferences and some implications for management. Proc Ecol Soc Aust 16:167–176

    Google Scholar 

  • Wilms W, Wiechers B (1997) Floral resource partitioning between native Melipona bees and the introduced Africanized honey bee in the Brazilian Atlantic rain forest. Apidologie 28:339–355

    Article  Google Scholar 

  • Wilms W, Wendel L, Zillikens A, Blochtein B, Engels W (1997) Bees and other insects recorded on flowering trees in a subtropical Araucaria forest in southern Brazil. Stud Neotrop Fauna Environ 32:220–226

    Google Scholar 

  • Wilson P, Thomson JD (1991) Heterogeneity among floral visitors leads to discordance between removal and deposition of pollen. Ecology 72:1503–1507

    Article  Google Scholar 

  • Winston ML (1994) The Africanized “Killer” bee: biology and public health. Invited review, Q. Rev. Medicine 87:263–267

    CAS  Google Scholar 

  • Wolda H, Roubik DW (1986) Nocturnal bee abundance and seasonal bee activity in a Panamanian forest. Ecology 67:426–433

    Article  Google Scholar 

  • Woodward DR (1996) Monitoring for impact of the introduced leafcutting bee, Megachile rotundata (F) (Hymenoptera: Megachilidae), near release sites in South Australia. Aust J Entomol 35:187–191

    Article  Google Scholar 

  • Wratt EC (1968) The pollinating activities of bumble bees and honey bees in relation to temperature, competing forage plants, and competition from other foragers. J Apicult Res 7(61):66

    Google Scholar 

  • Yokoyama J, Matsumura C, Nakajima M, Sugiura N, Matsumoto M, Kato M, Suzuki K, Washitani I (2004) Evaluation of present status on naturalization of introduced bumblebee, Bombus terrestris, and development of extermination procedure against the species for conservation of native bumblebee species (2). Ann Rep Pro Natura Fund 13:47–54 (in Japanese)

    Google Scholar 

  • Zhen-Ming J, Guanhang Y, Shuangxiu H, Shikui L, Zaijin R (1992) The advancement of apicultural science and technology in China. In: Verma LR (ed) Honeybees in mountain agriculture. Oxford/IBH Publishing Co Pvt Ltd, New Delhi, pp 133–147

    Google Scholar 

  • Zimmerman M, Cook S (1985) Pollinator foraging, experimental nectar-robbing and plant fitness in Impatiens capensis. Am Midl Nat 113:84–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharam P. Abrol .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abrol, D.P. (2012). Consequences of Introduced Honeybees Upon Native Bee Communities. In: Pollination Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1942-2_19

Download citation

Publish with us

Policies and ethics