Skip to main content

Pollinators as Bioindicators of Ecosystem Functioning

  • Chapter
  • First Online:
Pollination Biology

Abstract

Pollinators and pollination are crucial in the functioning of almost all terrestrial ecosystems and serve as valuable bioindicators of ecosystem health and can be used to monitor environmental stress brought about by introduced competitors, diseases, parasites, predators as well as by chemical and physical factors, particularly pesticides and habitat modification. Honeybees are useful as samplers of the environments because they indicate the chemical impairment of the environment they live in and have been used to assess atmospheric and other types of pollution. Pollinator guilds offer new means of assessing ecosystemic health because the species diversity and abundance relationship is changed from the log-normal standard expected from ecological principles and niche theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accorti M, Persano OL (1986) Un servizio di monitoraggio ambientale urbano: “Apincittà”. Informatore Agrario 42:39–41

    Google Scholar 

  • Ackerman JD (1983) Diversity and seasonality of male euglossine bees (Hymenoptera: Apidae) in Central Panama. Ecology 64:274–283

    Article  Google Scholar 

  • Agosta SJ (2002) Habitat use, diet, and roost selection by the big brown bat (Eptesicus fuscus) in North America: a case for conserving an abundant species. Mammal Rev 32:179–198

    Article  Google Scholar 

  • Agosta SJ, Morton D (2003) Diet of the big brown bat, Eptesicus fuscus, from Pennsylvania and western Maryland. Northeast Nat 10:89–104

    Google Scholar 

  • Alleva E, Francia N, Pandolfi M, De Marinis AM, Chiarotti F, Santucci D (2006) Organochlorine and heavy-metal contaminants in wild mammals and birds of Urbino-Pesaro Province, Italy: an analytic overview for potential bioindicators. Arch Environ Contam Toxicol 51:123–134

    Article  PubMed  CAS  Google Scholar 

  • Altieri MA (1987) Agroecology: scientific basis of alternative agriculture. Westview Press, Boulder, 227 pp

    Google Scholar 

  • Altieri MA, Whitcomb WH (1979) The potential use of weeds in the manipulation of beneficial insects. Hortic Sci 14:12–18

    Google Scholar 

  • Anderson JF, Wojtas MA (1986) Honey bees (Hymenoptera: Apidae) contaminated with pesticides and polychlorinated biphenyls. J Econ Entomol 79:1200–1205

    CAS  Google Scholar 

  • Anthony ELP, Kunz TH (1977) Feeding strategies of the little brown bat, Myotis lucifugus, in southern New Hampshire. Ecology 58:775–786

    Article  Google Scholar 

  • Arita HT, Martinez C (1990) Interacciones Flor-Murcielago: Un Enfoque Zoocentrico. Universidad Nacional Autonoma de Mexico, Mexico

    Google Scholar 

  • Atkins EL, Kellum D, Atkins KW (1981) Reducing pesticides hazard to honey bees: mortality prediction techniques and integrated management strategies. Division of Agricultural Sciences, University of California, Leaf. 2883, 22 pp (with: Supplemental list to leaflet 2883 (1981) compiled by E Atkins Nov 1990)

    Google Scholar 

  • Babendreier D, Kalberer N, Romeis J, Fluri P, Bigler F (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie 35:293–300

    Article  Google Scholar 

  • Bailey L, Ball BV (1991) Honey bee pathology, 2nd edn. Academic Press, London, 193 pp

    Google Scholar 

  • Banaszak J (ed) (1995a) Changes in the fauna of wild bees in Europe. Pedagogical University, Bydgoszcz, 220 pp

    Google Scholar 

  • Banaszak J (ed) (1995b) Natural resources of wild bees in Poland. Pedagogical University, Bydgoszcz, 174 pp

    Google Scholar 

  • Banda HJ, Paxton RJ (1991) Pollination of greenhouse tomatoes by bees. Acta Hortic 288:194–198

    Google Scholar 

  • Barisic D, Lazaric K, Lulic S, Vertacnik A, Drazic M, Kezic N (1994) 40K, 134Cs and 137Cs in ollen, honey and soil surface layer in Croatia. Apidologie 25(6):585–595

    Article  Google Scholar 

  • Barišic D, Bromenshenk JJ, Keziæ N, Vertaènik A (2002) The role of honey bees in environmental monitoring in Croatia. In: Devillers J, Pham-Delègue MH (eds) Honey bees: estimating the environmental impact of chemicals. Taylor & Francis, London/New York, pp. 160–185

    Article  Google Scholar 

  • Beccaloni GW, Gaston KJ (1995) Predicting the species richness of Neotropical forest butterflies: Ithominae (Lepidoptera: Nymphalidae) as indicators. Biol Conserv 71:77–86

    Article  Google Scholar 

  • Bernhardt P, Thien LB (1987) Self-isolation and insect pollination in primitive angiosperms: new evaluations of older hypotheses. Plant Syst Evol 156:159–176

    Article  Google Scholar 

  • Bohart GE (1972) Management of wild bees for pollination of crops. Annu Rev Entomol 17:287–312

    Article  Google Scholar 

  • Bowman DM, Woinarski JC, Sands DP, Wells A, McSHane VJ (1990) Slash and burn agriculture in the wet coastal lowlands of Papua New Guinea: response of birds, butterflies and reptiles. J Biogeogr 17:227–239

    Article  Google Scholar 

  • Bromenshenk JJ, Carlson SR, Simpson JC, Thomas JM (1985) Pollution monitoring of puget sound with honey bees. Science 227:632–634

    Article  PubMed  CAS  Google Scholar 

  • Bromenshenk JJ, Gudatis JL, Carlson SR, Thomas JM, Simmons MA (1991) Population dynamics of honey bee nucleus colonies exposed to industrial pollutants. Apidologie 22:359–369

    Article  CAS  Google Scholar 

  • Buchmann SE (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 73–113

    Google Scholar 

  • Buchmann SE, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington, DC, 292 pp

    Google Scholar 

  • Bunzl K, Kracke W, Vorwohl G (1988) Transfer of Chernobyl-derived 134Cs, 137Cs, 131I, and 103Ru from flowers to honey, and 103Ru from flowers to honey and pollen. J Environ Radioact 6:261–269

    Article  CAS  Google Scholar 

  • Callicott JB (1995) A review of some problems with the concept of ecosystem health. Ecosyst Health 1:101–112

    Google Scholar 

  • Cane JH, Payne JA (1988) Foraging ecology of Habropoda laboriosa (Hymenoptera: Anthophoridae), and oligolege of blueberries (Ericaceae: Vaccinium) in southeastern United States. Ann Entomol Soc Am 81:419–427

    Google Scholar 

  • Cane JH, Payne JA (1990) Native bee pollinates rabbiteye blueberry: highlights in agricultural research. Alabama Agric Res Sta 37(4):4

    Google Scholar 

  • Cavalchi B, Fornaciari S (1983) Api, miele, polline e propoli come possibili indicatori di un inquinamento da piombo e fluoro – Una esperienza di monitoraggio biologic nel comprensorio ceramico di Sassuolo-Scandiano. In: Manzini P, Spaggiari R (eds) Atti del seminario di studi “i biologi e l’ambiente” Nuove esperienze per la sorveglianza ecologica. Reggio Emilia, 17–18 Febbraio 1983, pp 275–300

    Google Scholar 

  • Celli G (1983) L’ape come insetto test della salute di un territorio. In: Arzone A, ContiM, Currado I, Marletto F, Pagiano G, Ugolini A, Vidano C (eds) Atti XIII Congresso Nazionale Italiano Ento139 mologia, Sestriere – Torino, pp 637–644

    Google Scholar 

  • Celli G, Maccagnani B (2003) Honey bees as bioindicators of environmental pollution. Bull Insectol 56(1):137–139

    Google Scholar 

  • Celli G, Porrini C (1987) Apicidi e residui di pesticide nelle api e nell’alveare in Italia (1983–1986). Bollettin dell’Istituto di Entomologia “Guido Grandi” dell’Università degli Studi di Bologna 42:75–86

    Google Scholar 

  • Celli G, Porrini C (1991) L’ape, un efficace bioindicatore dei pesticidi. Le Scienze 274:42–54

    Google Scholar 

  • Celli G, Poggiali F, Giordani G (1975) Inquinamento del nettare dei fiori di melo da endosulfan in rapporto a ripercussioni nocive sulle api bottinanti. In: Goidanich G, Stupazzoni G, Foschi S (eds) Atti Giornate Fitopatologiche, Torino, pp 117–120

    Google Scholar 

  • Celli G, Porrini C, Frediani D, Pinzauti M (1987) Api e piombo in città (nota preventiva). In: Bufalari V (ed) Atti del convegno: “Qualità dell’aria indicatori biologici api e piante”, Firenze, 19 Mar 1987, pp 11–45

    Google Scholar 

  • Celli G, Porrini C, Raboni F (1988a) Monitoraggio con api della presenza dei Ditiocarbammati nell’ambiente (1983–1986). Bollettino dell’Istituto di Entomologia “Guido Grandi” dell’Università degli Studi di Bologna 43:195–205

    Google Scholar 

  • Celli G, Porrini C, Siligardi G, Mazzali P (1988b) Le calibrage de l’instrument abeille par rapport au plomb. In: Proceedings XVIII international congress of entomology, Vancouver, 3–9 Aug 1988, p 467

    Google Scholar 

  • Celli G, Porrini C, Tiraferri S, (1988c) Il problema degli apicidi in rapporto ai principi attivi responsabili (1983–1986). In: Brunelli A, Foschi S (eds) Atti Giornate Fitopatologiche, vol 2. Lecce, pp 257–268

    Google Scholar 

  • Celli G, Porrini C, Balesstra V, Menozzi R (1989) Monitoraggio di inquinanti atmosferici urbani mediante api. Giornate di Studio su Salute e Ambiente, Cagliari, Italia 27–28 maggio 1989, pp 73–85

    Article  Google Scholar 

  • Celli G, Porrini C, Baldi M, Ghigli E (1991) Pesticides in Ferrara Province: two years’ monitoring with honey bees (1987–1988). Ethol Ecol Evol Spec Issue 1:111–115

    Google Scholar 

  • Clarke FM, Pio DV, Racey PA (2005a) A comparison of logging systems and bat diversity in the neotropics. Conserv Biol 19:1194–1204

    Article  Google Scholar 

  • Clarke FM, Rostant LV, Racey PA (2005b) Life after logging: post-logging recovery of a neotro­pical bat community. J Appl Ecol 42:409–420

    Article  Google Scholar 

  • Cleveland CJ, Frank JD, Federico P, Gomez I et al (2006) Economic value of the pest control service provided by Brazilian free-tailed bat in south-central Texas. Front Ecol Environ 4:238–243

    Article  Google Scholar 

  • Cody ML (1985) An introduction to habitat selection in birds. In: Cody ML (ed) Habitat selection in birds. Academic, Orlando, pp 4–56

    Google Scholar 

  • Corbet SA (1995) Insects, plants and succession: advantages of long-term set-aside. Agric Ecosyst Environ 53:201–217

    Article  Google Scholar 

  • Corbet SA, Williams IH, Osborne JL (1991) Bees and the pollination of crops and wild flowers in the European Community. Bee World 72:47–59

    Google Scholar 

  • Costanza R (1992) Towards an operational definition of ecosystem health 1. Measuring ecosystem health. In: Constanza R, Norton BG, Haskel BD (eds) Ecosystem health: new goals for environmental management. Island Press, Washington, DC, pp 239–256

    Google Scholar 

  • Cox PA, Elmquist T, Pierson E, Rainey WE (1991) Flying foxes as strong interactors in South Pacific island ecosystems: a conservation hypothesis. Conserv Biol 5:448–454

    Article  Google Scholar 

  • Crane E (1984) Bees, honey and pollen as indicators of metals in the environment. Bee World 55:47–49

    Google Scholar 

  • Crane E (1990) Bees and beekeeping: science, practice and world resources. Heinemann, Oxford, 614 pp

    Google Scholar 

  • Dewey JE (1973) Accumulation of fluorides by insects near an emission source in western Montana. Environ Entomol 2:179–182

    CAS  Google Scholar 

  • Dixon DP, Fingler BG (1982) The effects of the 1981 Manitoba emergency mosquito control program on honey bees. In: Western equine encephalitis in Manitoba. Government of Manitoba, Winnipeg, pp 243–247

    Google Scholar 

  • Dixon DP, Fingler BG (1984) The effects of the mosquito control program on bees. In: Final technical report volume, environmental monitoring program for the 1983, aerial spraying of malathion to combat western equine encephalitis. Environmental Management Division, Manitoba Department of Environment, Workplace Safety and Health, Winnipeg, pp 101–121

    Google Scholar 

  • Drescher W (1982) Die Eignung der Bienen als Indikatoren für Umweltbelastungen. Decheniana 26:171–177

    Google Scholar 

  • Dressler RL (1968) Pollination by euglossine bees. Evolution 22:202–210

    Article  Google Scholar 

  • Dressler RL (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13:373–394

    Article  Google Scholar 

  • Edwards M (1996) Optimizing habitats for bees in the United Kingdom: a review of recent conservation action. In: Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH (eds) The conservation of bees, vol 18, Linnean social symposium series. Academic, London, pp 35–47

    Google Scholar 

  • Ellis WN, Ellis-Adam AC (1993) To make a meadow it takes a clover and a bee: the entomophilous flora of northwestern Europe and its insects. Bijdragen tot de Dierkunde 63:193–220

    Google Scholar 

  • Ellis WN, Ellis-Adam AC (1995) Flower visitation, plant’s life forms, plant’s life forms and ecological characteristics (Syrphidae, Parasitica). Proc Sec Appl Entomol Neth Entomol Soc (NEV) 6:53–58

    Google Scholar 

  • Erickson EH, Atmowidjojo AH, Hines L (1998) Can we produce Varroa-tolerant honeybees in the United States? Am Bee J 138(11):828–832

    Google Scholar 

  • Espina D (1986) Beekeeping of the assassin bees. Editorial Tecnologica de Costa Rica, San Juan, 170 pp

    Google Scholar 

  • Estrada A, Coates-Estrada R (2001a) Bat species richness in live fences and in corridors of residual rain forest vegetation at Los Tuxtlas, Mexico. Ecography 24:94–102

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R (2001b) Species composition and reproductive phenology of bats in a tropical landscape at Los Tuxtlas, Mexico. J Trop Ecol 17:627–646

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R, Merrit D Jr (1993a) Bat species richness and abundance in tropical rain forest fragments and in agricultural habitats at Los Tuxtlas, Mexico. Ecography 16:309–318

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R, Merrit D, Montiel S, Curiel D (1993b) Patterns of frugivore species richness and abundance in forest islands and in agricultural habitats at Los Tuxtlas, Mexico. In: Fleming TH, Estrada A (eds) Frugivores and seed dispersal: ecological and evolutionary aspects. Kluwer, Dordrecht, pp 245–257

    Chapter  Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, Oxford, 244 pp

    Google Scholar 

  • FAO (1986) Tropical and subtropical apiculture. Bull. No. 68. Agricultural Service, FAO, Rome, 283 pp

    Google Scholar 

  • Federico P, Hallam TG, McCracken GF, Purucker ST et al (2008) Brazilian free-tailed bats (Tadarida brasiliensis) as insect predators in transgenic and conventional cotton crops. Ecol Appl 18:826–837

    Article  PubMed  Google Scholar 

  • Fenton MB, Acharya L, Audet D, Hickey MBC, Merriman C, Obrist MK, Syme DM (1992) Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. Biotropica 24:440–446

    Article  Google Scholar 

  • Fleming TH, Racey PA (2009) An introduction to Island bats. In: Fleming TH, Racey PA (eds) Island bats: ecology, evolution, and conservation. University of Chicago Press, Chicago, pp 1–14

    Google Scholar 

  • Fleming TH, Tuttle MD, Horner MA (1996) Pollination biology and relative importance of nocturnal and diurnal pollinatorsin three species of Sonoran desert columnar cacti. Southwest Nat 41:257–269

    Article  Google Scholar 

  • Fleming TH, Sahley CT, Holland JN, Nason JD, Hamrick JL (2001) Sonoran desert columnar cacti and the evolution of generalized pollination systems. Ecol Monogr 71:511–530

    Article  Google Scholar 

  • Fleming TH, Geiselman C, Kress WJ (2009) The evolution of bat pollination: a phylogenetic perspective. Ann Bot 104(6):1017–1043

    Article  PubMed  Google Scholar 

  • Ford BC, Jester WA, Griffith SM, Morse RA, Zall RR, Burgett DM, Bodyfelt FW, Lisk DJ (1988) Cesium-134 and Cesium-137 in honey bees and cheese samples collected in the US after the Chernobyl accident. Chemosphere 17:1153–1157

    Article  CAS  Google Scholar 

  • Frankie GW, Vinson SB, Newstrom LE, Barthell JF, Haber WA, Frankie JK (1990) Plant phenology, pollination ecology, pollinator behavior and conservation of pollinators in neotropical dry forest. In: Bawa KS, Hadley M (eds) Reproductive ecology of tropical forest plants, vol 7, Man and the biosphere series. Parthenon, Carnforth, pp 37–47

    Google Scholar 

  • Free JB (1993) Insect pollination of crops, 2nd edn. Academic, London, 684 pp

    Google Scholar 

  • Fries I, Wibran K (1987) Effects on honey-bee colonies following application of the pyrethroids cypermethrin and PP 321 in flowering oilseed rape. Am Bee J 127:266–269

    Article  Google Scholar 

  • Fujita MS, Tuttle MD (1991) Flying foxes (Chiroptera: Pteropodidae): threatened animals of key ecological and economic importance. Conserv Biol 5:455–463

    Article  Google Scholar 

  • Fuller RJ, Gough SJ, Marchant JH (1995a) Bird populations in new lowland woods: landscape, design and management perspectives. In: Ferris-Kaan R (ed) The ecology of woodland creation. Wiley, London, pp 163–182

    Google Scholar 

  • Fuller RJ, Gregory RD, Gibbons DW, Marchant JH, Wilson JH, Baillie JD, Carter SR (1995b) Population declines and range contractions among lowland farmland birds in Britain. Conserv Biol 9:1425–1441

    Article  Google Scholar 

  • Gardner TA, Barlow J, Araujo IS, Avila-Pires TC, Bonaldo AB, Costa JE, Esposito MC, Ferreira LV, Hawes MIM, Hernandez MIM, Hoogmoed MS, Leite RN, Lo-Man-Hung NF, Malcolm JR, Martins MB, Mestre LAM, Miranda-Sontos R, Overal WL, Parry L, Peters SL, Ribeiro-Junior MA, da Silva MNF, da Silva Motta C, Peres CA (2008) The cost effectiveness of biodiversity surveys in tropical forests. Ecol Lett 11:139–150

    Article  PubMed  Google Scholar 

  • Gattavecchia E, Ghini S, Tonelli D, Porrini C (1987) Il miele italiano dopo Chernobyl. L’ape nostra Amica 9(5):27

    Google Scholar 

  • Ginevan ME, Lane DD, Greenberg L (1980) Ambient air concentration of sulfur dioxide affects flight activity in bees. Proc Natl Acad Sci USA 77:5631–5633

    Article  PubMed  CAS  Google Scholar 

  • Graham JM (ed) (1992) The hive and the honey bee. Dadant and Sons, Hamilton, 1324 pp

    Google Scholar 

  • Grant V, Grant KA (1965) Flower pollination in the phlox family. Columbia University Press, New York, 179 pp

    Google Scholar 

  • Grant KA, Grant V (1968) Hummingbirds and their flowers. Columbia University Press, New York, 115 pp

    Google Scholar 

  • Greatorex-Davies JN, Sparks TH, Hall ML, Marrs RH (1993) The influence of shade on butterflies in rides of coniferised lowland woods in southern England and implications for conservation management. Biol Conserv 63:31–41

    Article  Google Scholar 

  • Greco CF, Kevan PG (1994) Contrasting patch choosing by anthophilous ambush predators: vegetation and floral cues for decisions by a crab spider (Misumena vatia) and males and females of an ambush bug (Phymata americana). Can J Zool 72:1580–1588

    Article  Google Scholar 

  • Gregory RD, van Strein A, Vorisek P, Gmelig Meyling AM, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Proc R Soc Lond Ser B Biol Sci 360:269–288

    Google Scholar 

  • Griffin DR, Webster FA, Michael CR (1960) The echolocation of flying insects by bats. Anim Behav 8:141–154

    Article  Google Scholar 

  • Haarmann TK (1997) Honey bees as indicators of radionuclide contamination: exploring sample consistency and temporal contaminant accumulation. J Apic Res 36(2):77–87

    Article  Google Scholar 

  • Haarmann TK (2000) Honey bees as indicators of radionuclide contamination: a truly useful biomonitor? In: Devillers J, Minh-H, Pham-Delègue M (eds) Honey bees estimating the environmental impact of chemicals. CRC Press, London/New York, pp 132–150

    Article  Google Scholar 

  • Haeseler V (1972) Man-made habitats (deforested area, gravel pit, city gardens, city gardens and parks) as refuges for insects. Hym Aculeata Zoologische Jahrbuch für Systematik 99:133–212

    Google Scholar 

  • Haeseler V (1982) Ameisen, Wespen und Bienen als Bewohner gepflasterter Bügersteige, Parkplätze und Strassen (Hymenoptera: Aculeata). Drosera 82:17–32

    Google Scholar 

  • Hansen H, Petersen JH (1988) Residues in honey and wax after treatment of honeybee colonies with brompropylate. Danish J Plant Soil Sci 92:1–6

    Article  Google Scholar 

  • Hayes JP, Loeb SC (2007) The influences of forest management on bats in North America. In: Lacki MJ, Hayes JP, Kurta A (eds) Bats in forests: conservation and management. Johns Hopkins University Press, Baltimore, pp. 207–235

    Article  Google Scholar 

  • Hill JK, Hamer KC, Lace LA, Banham WMT (1995) Effects of selective logging on tropical forest butterflies on Buru, Indonesia. J Appl Ecol 32:754–760

    Article  Google Scholar 

  • Hilty J, Merenlender A (2000) Faunal indicator taxa selection for monitoring ecosystem health. Biol Conserv 92:185–197

    Article  Google Scholar 

  • Hodgkinson R, Balding ST, Zubaid A, Kunz TH (2003) Fruit bats (Chiroptera: Pteropodidae) as seed dispersers and pollinators in lowland Malaysian rain forest. Biotropica 35:491–502

    Google Scholar 

  • Hurd PD Jr, Linsley EG (1975) The principle Larrea bees of the southwestern United States. Smithson Contr Zool 193:1–74

    Article  Google Scholar 

  • Inouye DW (1980) The terminology of floral larceny. Ecology 61:1251–1253

    Article  Google Scholar 

  • Jacob-Remacle A (1984) Étude écologique du peuplement d’hyménoptères aculéates survivant dans la zone la plus urbinisée de la ville de Liège. Bull Annu Soc R Belge Entomol 120:241–262

    Google Scholar 

  • Jacobs DS, Eick GN, Schoeman MC, Matthee CA (2006) Cryptic species in an insectivorous bat Scotophilus dinganii. J Mammal 87:161–170

    Article  Google Scholar 

  • Jamieson D (1995) Ecosystem health: some preventative medicine. Environ Values 4:333–350

    Article  Google Scholar 

  • Janzen DH (1981) Bee arrival at two Costa Rican female Catasetum orchid inflorescences, and a hypothesis on euglossine population structure. Oikos 36:177–183

    Article  Google Scholar 

  • Jervis MA, Kidd NAC, Fitton MG, Huddleston T, Dawah HA (1993) Flower-visiting by Hymenoptera parasitoids. J Nat Hist 27:67–105

    Article  Google Scholar 

  • Johansen CA (1977) Pesticides and pollination. Annu Rev Entomol 22:177–192

    Article  CAS  Google Scholar 

  • Johansen CA, Brown FC (1972) Toxicity of carbaryl – contaminated pollen collected by honeybees. Environ Entomol 1:385–386

    Article  Google Scholar 

  • Johansen CA, Mayer DF (1990) Pollinator protection. A bee and pesticide handbook. Wicwas Press, Cheshire, 212 pp

    Google Scholar 

  • Jones G, van Parijs SM (1993) Bimodal echolocation in pipistrelle bats: are cryptic species present? Proc R Soc Lond Ser B 251:119–125

    Article  CAS  Google Scholar 

  • Kalcounis-Rueppell MC, Payne VH, Huff SR, Boyko AL (2007) Effects of wastewater treatment plant effluent on bat foraging activity in an urban stream system. Biol Conserv 138:120–130

    Article  Google Scholar 

  • Kalka MB, Smith AR, Kalko EKV (2008) Bats limit arthropods and herbivory in a tropical forest. Science 320:71

    Article  PubMed  CAS  Google Scholar 

  • Kearney C, Volleth M, Contrafatto G, Taylor PJ (2002) Systematic implications of chromosome GTG-band and bacula morphology for southern African Eptesicus and Pipistrellus and several other species of Vespertilioninae (Chiroptera: Vespertilionidae). Acta Chiropt 4:55–76

    Article  Google Scholar 

  • Kearns CA, Inouye DW (1997) Pollinators, flowering plants, and conservation biology. BioScience 47:297–307

    Article  Google Scholar 

  • Kelm DH, Wiesner KR, von Helversen O (2008) Effects of artificial roosts for frugivores bats on seed dispersal in a Neotropical forest pasture mosaic. Conserv Biol 22:733–741

    Article  PubMed  Google Scholar 

  • Kevan PG (1974) Pollination, pesticides, and environmental quality. BioScience 24:198–199

    Article  Google Scholar 

  • Kevan PG (1975a) Pollination and environmental conservation. Environ Conserv 2:293–298

    Article  Google Scholar 

  • Kevan PG (1975b) Forest application of the insecticide Fenitrothion and its effects on wild bee pollinators (Hymenoptera: Apoidea) of lowbush blueberries (Vaccinium spp.) in southern New Brunswick, Canada. Biol Conserv 7:301–309

    Article  Google Scholar 

  • Kevan PG (1984a) Insect pollination of economically important plants of tropical and sub-tropical Asia. In: Expert consultation on beekeeping with Apis mellifera in tropical and sub-tropical Asia. Bangkok and Chiang Mai, Thailand. Food and Agriculture Organization of the United Nations, Rome, pp 77–85

    Google Scholar 

  • Kevan PG (1984b) Pollination by animals and angiosperm biosystematics. In: Grant WF (ed) Plant biosystematics. Academic, Toronto, pp 271–292

    Google Scholar 

  • Kevan PG (1986) Pollinating and flower visiting insects and the management of beneficial and harmful insects and plants. In: Hussein MY, Ibrahim AG (eds) Biological control in the Tropics: proceedings of the “First Regional Symposium on Biological Control” held at Universiti Pertanian Malaysia, Serdang from 4–6 Sep 1985, Universiti Pertanian Malaysia, Serdang, Selangor, pp 439–452

    Google Scholar 

  • Kevan P (1987) Alternative pollinators for Ontario’s crops. Proc Entomol Soc Ont 118:109–170

    Google Scholar 

  • Kevan PG (1989a) Recent Canadian progress on the biology, management and protection of native pollinators:ca.1983–1988. In: National workshop on bee and pollination research, Winnipeg, Agriculture Canada, Ottawa, pp 63–72, 4–5 Apr 1989

    Article  Google Scholar 

  • Kevan PG (1989b) Commodity-oriented pollination. In: National workshop on bee and pollination research, Winnipeg, 4–5 Apr 1989. Agriculture Canada, Ottawa, pp 168–171

    Article  Google Scholar 

  • Kevan PG (1990) Beekeeping and pollination at the crossroads. III alternative pollinators. Can Beekeep 16(1):8–11

    Article  Google Scholar 

  • Kevan PG (1991) Pollination: keystone process in sustainable global productivity. Acta Hortic 288:103–110

    Google Scholar 

  • Kevan PG (1993) Conservation and management of pollinators: an issue in sustainable global productivity. In: Conner LJ, Rinderer T, Sylvester A, Wongsiri S (eds) Asian apiculture. Wicwas Press, Cheshire, pp 281–288

    Google Scholar 

  • Kevan PG (1995) Applied pollination in Asia. In: Roubik DW (ed) Pollination of cultivated crops in the tropics. Food and Agriculture Organization of the United Nations, Bulletin Number 118, Rome

    Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453

    Article  Google Scholar 

  • Kevan PG, Baker HG (1998) Insects on flowers: pollination and floral visitations. In: Huffaker CB, Gutierrez RC (eds) Insect ecology, 2nd edn. Wiley, New York, pp 607–631

    Google Scholar 

  • Kevan PG, Oppermann EB (1980) Nova Scotia and Maine: a reply to Wood et al. Can J Agric Econ 28:81–84

    Article  Google Scholar 

  • Kevan PG, Plowright RC (1989) Fenitrothion and insect pollination. In: Ernst WR, Pearce PA, Pollock TL (eds) Environmental effects of fenitrothion use in forestry: impacts on insect pollinators, songbirds, and aquatic organisms. Environment Canada, Dartmouth, pp 13–42

    Google Scholar 

  • Kevan PG, Plowright RC (1995) Forest insect pests in Canada. In: Armstrong JA, Ives WGH (eds) Natural resources Canada. Canadian Forest Services, Ottawa, pp 607–618, Chapter 59

    Google Scholar 

  • Kevan PG, Gadawski RM, Kevan SD, Gadawski SE (1984) Pollination of cranberries, Vaccinium macrocarpon, on cultivated marshes in Ontario. Proc Entomol Soc Ont 114:45–53

    Google Scholar 

  • Kevan PG, Hussein NY, Hussey N, Wahid MB (1986) Modelling the use of Elaeidobius kamerunicus for pollination of oil palm. Planter 62:89–99

    Google Scholar 

  • Kevan PG, Mohr NA, Offer M, Offer D, Kemp JR (1988) The squash and gourd bee, Peponapis pruinosa (Hymenoptera: Anthophoridae) in Ontario, Canada. Proc Entomol Soc Ont 119:9–15

    Google Scholar 

  • Kevan PG, Clark EA, Thomas VG (1990a) Insect pollinators and sustainable agriculture. Am J Altern Agric 5:13–22

    Article  Google Scholar 

  • Kevan PG, Clark EA, Thomas VG (1990b) Pollination: a crucial ecological and mutualistic link in agroforestry and sustainable agriculture. Proc Entomol Soc Ont 121:43–48

    Google Scholar 

  • Kevan PG, Clark EA, Thomas VG (1991a) Pollination: a crucial link in agroforestry and sustainable agriculture. In: Proceedings of 1st conference agroforestry in North America. Ontario Ministry of Agriculture and Food, Guelph, pp 242–248

    Google Scholar 

  • Kevan PG, StraverWA, Offer M, Laverty TM (1991b) Pollination of greenhouse tomatoes by bumblebees in Ontario. Proc Entomol Soc Ont 122:15–19

    Google Scholar 

  • Kevan PG, Greco CF, Belaoussoff S (1997) Log-normality of biodiversity and abundance in diagnosis and measuring of ecosystemic health: pesticide stress on pollinators on blueberry heaths. J Appl Ecol 34:1122–1136

    Article  Google Scholar 

  • Kiefer A, Mayer F, Kosuch J, von Helversen O, Veith M (2002) Conflicting molecular phylogenies of European long-eared bats (Plecotus) can be explained by cryptic diversity. Mol Phylogenet Evol 25(3):557–566

    Article  PubMed  CAS  Google Scholar 

  • King JL, Holloway JK (1930) Tiphia popilliavora Rohwer, a parasite of the Japanese beetle. US Department of Agriculture Circular No. 145, p 11

    Google Scholar 

  • Kingsmill S (1993) Pollinators in peril. Nat Can 22(2):15–23

    Google Scholar 

  • Kingston T, Rossiter SJ (2004) Harmonic-hopping in Wallacea’s bats. Nature 429:654–657

    Article  PubMed  CAS  Google Scholar 

  • Kingston T, Lara MC, Jones G, Akbar Z, Schneider CJ, Kunz TH (2001) Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proc R Soc Lond Ser B 268:1381–1386

    Article  CAS  Google Scholar 

  • Klemm M (1996) Man-made bee habitats in the anthropogenous landscape of central Europe: substitutes for threatened or destroyed riverine habitats? In: Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH (eds) The conservation of bees, vol 18, Linnean social symposium series. Academic, London, pp 17–34

    Google Scholar 

  • Koskimies P (1989) Birds as a tool in environmental monitoring. Ann Zool Fenn 26:153–166

    Google Scholar 

  • Kratochwil A, Klatt M (1989) Bee species of ruderal sites in the city of Freiburg: Br (FRG) submediterrenean elements in mosaic habitats with high persistence. Zoologische Jahrbuch für Systematik 116:379–389

    Google Scholar 

  • Krell R (1995) Alternatives to artificial pollinator populations (Part 1.6 pp 74–84) and Successful pollination with enhanced pollinator populations (Part 2.1 pp 93–100). In: Roubik DW (ed) Pollination of cultivated plants in the tropics, vol 118, FAO agricultural service bulletin. FAO, Rome, 196 pp

    Google Scholar 

  • Kress WJ, Schatz GE, Andrianifahanana M, Morland HS (1994) Pollination of Ravenala madagascariensis (Strelitziaceae) by lemurs in Madagascar: evidence for an archaic coevolutionary system. Am J Bot 81:542–551

    Article  Google Scholar 

  • Krunic’ MD, Terzic’ LR, Kulinc evic’ JM (1989) Honey resistance to air contamination with arsenic from a copper processing plant. Apidologie 20:251–255

    Article  Google Scholar 

  • Kubik M, Nowacki J, Michalczuk L, Pidek A, Marcinkowski J (1995) Penetration of fluvalinate into bee-products. J Fruit Ornam Plant Res 1:13–22

    Google Scholar 

  • Kunz TH (1982) Roosting ecology of bats. In: Kunz TH (ed) Ecology of bats. Plenum Press, New York, pp 1–55

    Chapter  Google Scholar 

  • Kunz TH (1996) Obligate and opportunistic interactions of Old World tropical bats and plants. In: Hasan ZA, Zubaid A (eds) Conservation and faunal biodiversity in Malaysia. Penerbit Universiti Kebangsaan Malaysia, Kuala Lumpur, pp 37–65

    Google Scholar 

  • Kunz TH (2003) Censusing bats: challenges, solutions, and sampling biases. In: O’Shea TJ, Bogan MA (eds) Monitoring trends in bat populations of the United States and territories: problems and prospects. US Geological Survey, Biological Resources Division, Information and Technology Report, USGS/BRD/ITR-2003-003, Washington, DC, pp 9–20

    Google Scholar 

  • Kunz TH, Fenton MB (2003) Bat ecology. University of Chicago Press, Chicago

    Google Scholar 

  • Kunz TH, Lumsden LF (2003) Ecology of cavity and foliage roosting bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 3–89

    Google Scholar 

  • Kunz TH, Parsons S (eds) (2009) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Kunz TH, Pierson ED (1994) Bats of the world: an introduction. In: Nowak RW (ed) Walker’s bats of the world. Johns Hopkins University Press, Baltimore, pp 1–46

    Google Scholar 

  • Kunz TH, Reynolds DS (2003) Bat colonies in buildings. In: O’Shea TJ, Bogan MA (eds) Monitoring trends in bat populations of the United States and territories: problems and prospects. US Geological Survey, Biological Resources Division, Information and Technology Report, USGS/ BRD/ITR-2003-003, Washington, DC, pp 91–102

    Google Scholar 

  • Kunz TH, Anthony ELP, Rumage WT (1977) Mortality of little brown bats following multiple pesticide applications. J Wildl Manag 41:476–483

    Article  CAS  Google Scholar 

  • Kunz TH, Arnett EB, Erickson WP, Johnson GD et al (2007) Ecological impacts of wind energy development on bats: questions, hypotheses, and research needs. Front Ecol Environ 5:315–324

    Article  Google Scholar 

  • Kunz TH, Gauthreaux SA Jr, Hristov NI, Horn JW et al (2008) Aeroecology: probing and modeling the aerosphere. Integr Comp Biol 48:1–11

    Article  PubMed  Google Scholar 

  • Kunz TH, Betke M, Hristov NI, Vonhof M (2009a) Methods for assessing colony size, population size, and relative abundance of bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. Johns Hopkins University Press, Baltimore (in press)

    Google Scholar 

  • Kunz TH, Hodkison R, Weise C (2009b) Methods of capturing and handling bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. Johns Hopkins University Press, Baltimore (in press)

    Google Scholar 

  • Kurta A, Bell GP, Nagy KA, Kunz TH (1989a) Energetics of pregnancy and lactation in free-ranging little brown bats (Myotis lucifugus). Physiol Zool 62:804–818

    Google Scholar 

  • Kurta A, Bell GP, Nagy KA, Kunz TH (1989b) Water balance of free ranging little brown bats (myotis lucifugus) during pregnancy and lactation. Can J Zool 67:2468–2472

    Article  Google Scholar 

  • Kushlan JM (1993) Colonial waterbirds as bioindicators of environmental change. Colon Waterbird 16:223–225

    Article  Google Scholar 

  • Landres PB, Verner J, Thomas JW (1988) Ecological uses of vertebrate indicator species: a critique. Conserv Biol 2(4):316–328

    Article  Google Scholar 

  • Lee YF, McCracken GF (2005) Dietary variation of Brazilian free-tailed bats links to migratory populations of pest insects. J Mammal 86:67–96

    Article  Google Scholar 

  • Leius K (1960) Attractiveness of different foods and flowers to the adults of some hymenopterous parasites. Can Entomol 92:369–376

    Article  Google Scholar 

  • Leius K (1967) Influence of wild flowers on parasitism of tent caterpillar and codling moth. Can Entomol 99:444–446

    Article  Google Scholar 

  • Louette M, Bijnens L, Upoki Agenong’a D, Fotso RC (1995) The utility of birds as bioindicators: case-studies in Equatorial Africa. Belg J Zool 125:157–165

    Google Scholar 

  • MacKay PA, Knerer G (1979) Seasonal occurrence and abundance in a community of wild bees from an old field habitat in southern Ontario. Can Entomol 111:365–376

    Article  Google Scholar 

  • MacKenzie KE (1993) Honey bees and pesticides: a complex problem. Vector Contr Bull North Central States 1(2):123–136

    Google Scholar 

  • MacKenzie KE (1994) Pollination of two Ericaceous berry crops, the highbush blueberry (Vaccinium corymbosum L.) and the American cranberry (Vaccinium macrocarpon Ait.). PhD dissertation, Cornell University, Ithaca

    Google Scholar 

  • Mardan M, Yatim IM, Khalid MR (1991) Nesting biology and foraging activity of carpenter bee on passion fruit. Acta Hortic 288:127–132

    Google Scholar 

  • Mardan M, Jaafar ASU, Yatim IM (1993) Investigations on the plant pollinator compatibility between introduced passion fruit and an indigenous large carpenter bee. In: Connor LJ, Rinderer T, Sylvester HA, Wongsiri S (eds) Asian apiculture. Proceedings of the 1st international conference Asian Honeybees and Bee Mites, Wicwas Press, Cheshire, pp 384–390

    Google Scholar 

  • Martin EC, McGregor SE (1973) Changing trends in insect pollination of commercial crops. Annu Rev Entomol 18:207–226

    Article  CAS  Google Scholar 

  • Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH (eds) (1996) The conservation of bees, vol 18, Linnean social symposium. Academic, London, 252 pp

    Google Scholar 

  • Mayer DF, Lunden JD (1986) Toxicity of fungicides and an acaricide to honey bees (Hymenoptera: Apidae) and their effects on bee foraging behavior and pollen viability on blooming apples and pears. Environ Entomol 15:1047–1049

    CAS  Google Scholar 

  • Mayer F, von Helversen O (2001) Cryptic diversity in European bats. Proc R Soc Ser B Biol Sci 268:1825–1832

    Article  CAS  Google Scholar 

  • Mayer DF, Johansen CA, Lunden JD, Rathbone L (1987) Bee hazard of insecticides combined with chemical stickers. Am Bee J 127(7):493–495

    Google Scholar 

  • Mbaya JKS, Kevan PG (1995) Applied pollination in Africa. In: Roubik DW (ed) Pollination of cultivated crops in the tropics. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Medellín R, Equihua M, Amín MA (2000) Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conserv Biol 14:1666–1675

    Article  Google Scholar 

  • Meléndez-Ramírez V (1997) Polinización y biodiversidad de abejas nativas asociadas a cultivos hortícolas en el estado de Yucatán, México. M. Sc. Tesis, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma de Yucatán, Mérida

    Google Scholar 

  • Molina-Freaner F, Rojas-Martinez A, Fleming TH, Valiente- Banuet A (2004) Pollination biology of the columnar cactus Pachycereus pecten-aboriginum in north-western Mexico. J Arid Environ 56:117–127

    Article  Google Scholar 

  • Molthan J, Ruppert V (1988) Zur Beteutung blühender Wildkräuter in Feldrainen und Äckern für Blütenbesuchendeden Nutzinsekten. Mitteilungen aus der biologischen Bundesanstalt für Land- und Forstwirtschaft 247:85–99

    Google Scholar 

  • Moreno CE, Halffter G (2000) Assessing the completeness of bat biodiversity using species accumulation curves. J Appl Ecol 37:149–158

    Article  Google Scholar 

  • Moreno CE, Halffter G (2001) Spatial and temporal analysis of α, β and γ diversities of bats in a fragmented landscape. Biodivers Conserv 10:367–382

    Article  Google Scholar 

  • Morse RA, Culiney TW, Gutenmann WH, Litman CB, Lisk DJ (1987) Polychlorinated biphenyls in honeys. Bull Environ Contam Toxicol 38:271–276

    Article  Google Scholar 

  • Nelson SM, Anderson DC (1994) An assessment of riparian environmental quality by using butterflies and disturbance susceptibility scores. Southwest Nat 39:137–142

    Article  Google Scholar 

  • New TR, Pyle RM, Thomas JA, Thomas CD, Hammond PC (1995) Butterfly conservation management. Annu Rev Entomol 40:57–83

    Article  CAS  Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Cons Biol 4:355–364

    Article  Google Scholar 

  • Oostermeijer JGB, van Swaay CAM (1998) The relationship between butterflies and ­environmental indicator values: a tool for conservation in a changing landscape. Biol Conserv 86:271–280

    Article  Google Scholar 

  • Osborne JL, Williams IH, Corbet SA (1991) Bees, pollination and habitat change in the European community. Bee World 72:99–116

    Article  Google Scholar 

  • O’Shea TJ, Bogan MA (eds) Monitoring trends in bat populations of the United States and territories: problems and prospects. U.S. Geological Survey, Information and Technology Report, USGS/ BRD/ITR--2003–0003, 264 p

    Article  Google Scholar 

  • Parker FD, Batra SWT, Tepedino V (1987) New pollinators for our crops. Agric Zool Rev 2:279–304

    Google Scholar 

  • Patterson BD, Willig MR, Stevens RD (2003) Trophic strategies, niche partitioning, and patterns of ecological organization. In: IKunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 536–579

    Google Scholar 

  • Pierson ED (1998) Tall trees, deep holes, and scarred landscapes: conservation biology and North American bats. In: Kunz TH, Racey PA (eds) Bat biology and conservation. Smithsonian Institution Press, Washington, DC, pp 309–325

    Article  Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation: the British butterfly monitoring scheme. Chapman and Hill, London

    Google Scholar 

  • Pollard E, Elias DO, Skelton MJ, Thomas JA (1975) A method of assessing the abundance of butterflies in Monks Wood National Nature Reserve in 1973. Entomol Gaz 26:79–88

    Google Scholar 

  • Pollard E, Woiwod IP, Greatorex-Davies JN, Yates TJ, Welch RC (1998) The spread of coarse grasses and changes in numbers of Lepidoptera in a woodland nature reserve. Biol Conserv 84:17–24

    Article  Google Scholar 

  • Porrini C, Colombo V, Celli G (1996) The honey bee (Apis mellifera L.) as pesticide bioindicator. Evaluation of the degree of pollution by means of environmental hazard indexes. In: Proceedings XX international congress of entomology, Firenze, 25–31 Aug 1996, p 444

    Google Scholar 

  • Porrini C, Celli G, Radeghieri P (1998) Monitoring of pesticides through the use of honeybees as bioindicators of the Emilia-Romagna coastline (1995–1996). Ann Chim 88:243–252

    CAS  Google Scholar 

  • Porrini C, Ghini S, Girotti S, Sabatini AG, Gattavecchia E, Celli G (2002) Use of honey bees as bioindicators of environmental pollution in Italy. In: Devillers J, Pham-Delègue M (eds) Honey bees: estimating the environmental impact of chemicals. Taylor & Francis, London/New York, pp 186–247

    Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Harper Collins, London, 479 pp

    Google Scholar 

  • Pullin AS (1996) Restoration of butterfly populations in Britain. Restor Ecol 4:71–81

    Article  Google Scholar 

  • Punchihewa RWK (1994) Beekeeping for honey production in Sri Lanka: management of Asiatic hive honeybee Apis cerana in its natural tropical monsoonal environment. Sri Lanka Department of Agriculture, Peredeniya, 232 pp

    Google Scholar 

  • Rapport DJ (1992) What is clinical ecology? In: Constanza R, Norton BG, Haskel BD (eds) Ecosystem health: new goals for environmental management. Island Press, Washington, DC, pp 144–156

    Google Scholar 

  • Rathke B (1983) Competition and facilitation among plants for pollination. In: Real L (ed) Pollination biology. Academic, New York, pp 305–329

    Google Scholar 

  • Rathke B (1988) Interactions for pollination among coflowering shrubs. Ecology 69:446–457

    Article  Google Scholar 

  • Reynaud PA, Thioulouse J (2000) Identification of birds as biological markers along a neotropical urban–rural gradient (Cayenne, French Guiana), using co-inertia analysis. J Environ Manag 59:121–140

    Article  Google Scholar 

  • Richards KW (1984) Alfalfa leafcutter bee management in western Canada. Publication No. 1495E, Agriculture Canada, p 30

    Google Scholar 

  • Richards AJ (1986) Plant breeding systems. George Allen and Unwin, London, 529 pp

    Google Scholar 

  • Richards KW (1987) Alfalfa leafcutter bee management in Canada. Bee World 68:168–178

    Google Scholar 

  • Richards KW (1993) Non-Apis bees as crop pollinators. Rev Suisse Zool 100:807–822

    Google Scholar 

  • Richards KW, Myers TW (1995) Effects of lifestock gazing on bumble bee and native flowering plant populations. In: Proceedings of the 4th Prairie conservation and endangered species workshop ‘Sharing the Prairies, Sustainable Use of a Vulnerable Landscape’, Lethbridge, 23–26 Feb 1995 (abstract in press)

    Google Scholar 

  • Rinderer TE (1995) Honeybee genetics. In: Kevan PG (ed) The Asiatic hive bee: apiculture, biology, and role in sustainable development in tropical and subtropical Asia. Enviroquest Ltd, Cambridge, pp 81–86

    Google Scholar 

  • Rosenberg DM, Danks HV, Lehmkuhl DM (1986) Importance of insects in environmental impact assessment. Environ Manag 10:773–783

    Article  Google Scholar 

  • Roubik DW (1988) An overview of Africanized honey-bee populations: reproduction, diet, and competition. In: Needham GR, Page RE, Delfinado-Baker M, Bowman CE (eds) Africanized honeybees and bee mites. Ellis Horwood, Chichester, pp 45–54

    Google Scholar 

  • Roubik DW (ed) (1995) Pollination of cultivated plants in the tropics, vol 118, FAO Agriculture service bulletin. FAO, Rome, 196 pp

    Google Scholar 

  • Roubik DW, Hanson PE (2004) Orchid bees of tropical America: biology and field guide. Instituto Nacional de Biodiversidad (INBio), Heredia, 370 p

    Google Scholar 

  • Rousseau M (1972) Les abeilles domestiques et la pollution de l’environnement. Bull Office Int Epizooites 77:1473–1480

    Google Scholar 

  • Ruppert V(1993) Einflusz blutenreicher feldrandstrukturenauf die dichte blutenbessuchender nutzinsekten insbesondere der Syrphinae(Diptera:Syrphidae). Agrarokologie 8:1–49

    Article  Google Scholar 

  • Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Berlin, 284 pp

    Book  Google Scholar 

  • Sauer C (1996) Urban habitats for bees: the example of the city of Berlin. In: Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH (eds) The conservation of bees, vol 18, Linnean social symposium. Academic, London, pp 47–54

    Google Scholar 

  • Schiestl FP, Roubik DW (2003) Odor compound detection in male euglossine bees. J Chem Ecol 19(1):253–257

    Article  Google Scholar 

  • Schmid A (1992) Untersuchungen zur Attraktivität von Ackerwildkräuten für aphidophage Marienkäfer (Coleoptera, Coccinellidae). Agrarökologie 5:1–122

    Google Scholar 

  • Schultz CB (1998) Dispersal behavior and its implications for reserve design in a rare Oregon butterfly. Conserv Biol 12:248–292

    Article  Google Scholar 

  • Sihag RC (1995) Pollination biology: pollination, plant reproduction and crop seed production. Rajendra Scientific Publishers, Hisar

    Article  Google Scholar 

  • Simberloff D (1998) Flagships, umbrellas, and keystones: is single-species management passe in the landscape era? Biol Conserv 83:247–257

    Article  Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, 312–529

    Article  Google Scholar 

  • Simmons NB, Conway T (2003) Evolution of ecological diversity in bats. In: Kunz T, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 493–535

    Google Scholar 

  • Southwick EE, Southwick L (1992) Estimating the economic value of honeybees (Hymenoptera: Apidae) as agricultural pollinators in the United States. J Econ Entomol 85:621–633

    Google Scholar 

  • Sparks TH, Greatorex-Davies JN, Mountford JO, Hall ML, Marrs RH (1996) The effects of shade on the plant communities of rides in plantation woodland and implications for butterfly conservation. For Ecol Manag 80:197–207

    Article  Google Scholar 

  • Spitzer K, Jaros J, Havelka J, Leps J (1997) Effects of small-scale disturbance on butterfly communities of an Indochinese montane rainforest. Biol Conserv 80:9–15

    Article  Google Scholar 

  • Start AN, Marshall AG (1976) Nectarivorous bats as pollinators of trees in West Malaysia. In: Burley J, Styles BT (eds) Tropical trees, vol 2, Linnean society symposium. Academic, London

    Google Scholar 

  • Stein K, Umland F (1987) Mobile und immobile Probensammlung mit Hilfe von Bienen und Birken. Fresenius Zeitschrift für Analytische Chemie 327:132–141

    Article  CAS  Google Scholar 

  • Sugihara G (1980) Minimal community structure: an explanation of species abundance patterns. Am Nat 116:770–787

    Article  Google Scholar 

  • Svoboda J (1962) Teneur en strontium 90 dans les abeilles et dans leurs produits. Bull Apicole 5:101–103

    Google Scholar 

  • Swengel AB (1998) Effects of management on butterfly abundance in tallgrass prairie and pine barrens. Biol Conserv 83:77–89

    Article  Google Scholar 

  • Syed RA, Law IH, Corley RHV (1982) Insect pollination of oil palm: introduction, establishment and pollinating efficiency of Elaeidobius kamerunicus in Malaysia. Planter 58:547–561

    Google Scholar 

  • Sylvester HA (1995) Biotechnological potential of Apis cerana. In: Kevan PG (ed) The Asiatic hive bee: apiculture, biology, and role in sustainable development in tropical and subtropical Asia. Enviroquest Ltd, Cambridge, pp 87–96

    Google Scholar 

  • Syme PD (1975) The effects of flowers on the longevity and fecundity of two native parasites of the European pine shoot moth in Ontario. Environ Entomol 4:337–346

    Google Scholar 

  • Tepedino VJ, Stanton NL (1981) Diversity and competition in bee-plant communities on short grass prairie. Oikos 36:35–44

    Article  Google Scholar 

  • Thomas CD, Harrison S (1992) Spatial dynamics of a patchily distributed butterfly species. J Anim Ecol 61:437–446

    Article  Google Scholar 

  • Tonelli D, Gattavecchia E, Ghini S, Porrini C, Celli G, Mercuri AM (1990) Honey bees and their products as indicators of environmental radioactive pollution. J Radioanal Nucl Chem Artic 141(2):427–436

    Article  CAS  Google Scholar 

  • Torchio PF (1987) Use of non-honey bee species as pollinators of crops. Proc Entomol Soc Ont 118:111–124

    Google Scholar 

  • Torchio PF (1990) Diversification of pollination strategies for US crops. Environ Entomol 19:1649–1656

    Google Scholar 

  • Torchio PF (1991) Bees as crop pollinators and the role of solitary species in changing environments. Acta Hortic 288:49–61

    Google Scholar 

  • Torchio PF (1994) The present status and future prospects of non-social bees as crop pollinators. Bee World 75:49–53

    Google Scholar 

  • Torres F, Guyabo SF, Asensio E (1989) Effects de la presion urbana sobre abejas y avispas en Salamura. V Sperfamilia Apoidea. Communo Insttuto Nacional de Investigatigaciones Agraria. Series Recursos Naturales 52:1–49

    Article  Google Scholar 

  • Tremolada P, Bernardinelli I, Colombo M, Spreafico M, Vighi M (2004) Coumophos distribution in the hive ecosystem: case study for modelling applications. Ecotoxicology 13:589–601

    Article  Google Scholar 

  • Tsigouri A, Passaloglou-Katrali M, Sabatakou O (2004). Palynological characteristics of different unifloral honeys from Greece. Grana 43:122–128

    Article  Google Scholar 

  • Verma LR (1990) Beekeeping in integrated mountain development: economic and scientific perspectives. Oxford & IBH, New Delhi, 367 pp

    Google Scholar 

  • Verma LR (1995) Apis cerana: biometric, genetic and behavioural aspects. In: Kevan PG (ed) The Asiatic hive bee: apiculture, biology, and role in sustainable development in tropical and subtropical Asia. Enviroquest Ltd, Cambridge, pp 41–54

    Google Scholar 

  • Vogel S (1990) The role of scent glands in pollination: on the structure and function of osmophores. A. A. Balkema, Rotterdam, 202 pp

    Google Scholar 

  • Vogel S, Westerkamp C (1991) Pollination: an integrating factor in biocoenoses. In: Seitz A, Loeschke V (eds) Species conservation: a population-biological approach. Birkhauser, Basel, pp 159–170

    Google Scholar 

  • Wahl O, Ulm K (1983) Influence of pollen feeding and physiological condition on pesticide sensitivity of the honeybee Apis mellifera carnica. Oecologia 59:106–128

    Article  Google Scholar 

  • Waller GD, Erickson BJ, Harvey J, Martin JH (1984) Effects of dimethoate on honey bees (Hymenoptera: Apidae) when applied to flowering lemons. J Econ Entomol 77:70–74

    Article  Google Scholar 

  • Wallowork-Barber AK, Ferenbaugh RW, Gladney ES (1982) The use of honey bees as monitors of environmental pollution. Am Bee J 122(11):770–772

    Article  Google Scholar 

  • Walsh A, Catto C, Hutson T, Racey P, Richardson P, Langton S (2001) The UK’s national bat monitoring programme, Final report 2001. Bat Conservation Trust, UK

    Article  Google Scholar 

  • Warren MS (1985) The influence of shade on butterfly numbers in woodland rides with special reference to the wood white Leptidea sinapis. Biol Conserv 33:147–164

    Article  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Watanabe ME (1994) Pollination worries rise as honey bees decline. Science 265:1170

    Article  PubMed  CAS  Google Scholar 

  • Weiss E, Stettmer C (1991) Unkräuter in der Agrarlandschaft locken blütenbesuchende Nutzinsekten an. Agrarökologie 4:1–104

    Google Scholar 

  • Westerkamp CW (1991) Honeybees are poor pollinators – why? Plant Syst Evol 177:71–75

    Article  Google Scholar 

  • Whitaker JO Jr (1993) Bats, beetles, and bugs. Bats 11(1):23

    Google Scholar 

  • Whitaker JO Jr (1995) Food of the big brown bat, Eptesicus fuscus, from maternity colonies in Indiana and Illinois. Am Midl Nat 134:346–360

    Article  Google Scholar 

  • Whitehead VB, Giliomee JH, Rebelo AG (1987) Insect pollination of the Cape flora. In: Rebelo AG (ed) A preliminary synthesis of pollination biology in the Cape flora. South African National Scientific Programs Report No. 141, pp 52–82

    Google Scholar 

  • Wickramasinghe LP, Harris S, Jones G, Vaughan N (2003) Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. J Appl Ecol 40:984–993

    Article  Google Scholar 

  • Willemstein SC (1987) An evolutionary basis for pollination ecology, vol 10, Reiden botanical series. Leiden University Press, Leiden, 425 pp

    Google Scholar 

  • Williams IH (1996) Aspects of bee diversity and crop pollination in the European union. In: Matheson A, Buchmann SL, Toole CO’, Westrich P, Williams IH (eds) The conservation of bees, Linnaean Society symposium series, vol 18. Academic Press, London, pp 63–80

    Article  PubMed  CAS  Google Scholar 

  • Williams IH, Corbet SA, Osborne JL (1991) Beekeeping, wild bees, wild bees and pollination in the European Community. Bee World 72:170–180

    Article  Google Scholar 

  • Williams-Guillén K, Perfecto I, Vandermeer J (2008) Bats limit insects in a Neotropical agroforestry system. Science 320:70–70

    Article  PubMed  CAS  Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309

    Article  Google Scholar 

  • Willis DS, Kevan PG (1995) Foraging dynamics of Peponapis pruinosa on pumpkin (Cucurbita pepo) in southern Ontario. Can Entomol 127:167–175

    Article  Google Scholar 

  • Willmer PG, Bataw AAM, Hughes JP (1994) The superiority of bumblebees to honeybees as ­pollinators: insect visits to raspberry flowers. Ecol Entomol 19:271–284

    Article  Google Scholar 

  • Wood B, Gillman MP (1998) The effects of disturbance on forest butterflies using two methods of sampling in Trinidad. Biodivers Conserv 7:597–616

    Article  Google Scholar 

  • Yakobson BA (1996) The monitoring of possible biological and chemical contaminants in bee products. In: Proceedings of international conference on bee products: applications and Apitherapy. Tel –Aviv, isarael, pp 227–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharam P. Abrol .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abrol, D.P. (2012). Pollinators as Bioindicators of Ecosystem Functioning. In: Pollination Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1942-2_16

Download citation

Publish with us

Policies and ethics