Skip to main content

Biochemical Basis of Plant-Pollination Interaction

  • Chapter
  • First Online:
Pollination Biology

Abstract

Plants use chemical components to attract potential pollinators to visit flowers and facilitate the efficient transfer of pollen The Evolution of plant volatile production in pollination ecology and in pollinator-plant relationships has been discussed in this chapter. When insects, birds and bats visit flowers for nectar and pollen, they usually pollinate flowers thereby benefitting from the mutualistic interaction. This interrelationship between the two is governed by biochemical factors such as scent, colour and nutritional value of nectar and pollen. For example, the faecal-smelling indole of Arum maculatum is also produced, surprisingly, in the blossoms of Cucurbita (Cucurbitaceae), where the pollinators are diabroticite beetles. Indole acts synergistically with 1, 2, 4-trimethoxybenzene and ( E )- cinnamaldehyde to attract the beetles to the flowers for pollination. In visiting flowers to collect their food, bees may come into contact with toxic constituents. Alkaloids, for example, are known to be present in certain nectars. The apparent reliance on one or a few floral scent constituents as attractants and few and specific pollinators may indicate co-evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arms K, Feeny P, Lederhouse RC (1974) Sodium: stimulus for puddling behavior by tiger swallowtail butterflies, papilio glaucus. Science 185:372–374

    PubMed  CAS  Google Scholar 

  • Asen S, Stewart RN, Norris KH (1972) Co-pigmentation of anthocyanins in plant tissue and its effect on color. Phytochemistry 11:1139–1144

    CAS  Google Scholar 

  • Azuma H, Toyota M, Asakawa Y, Kawano S (1996) Naphthalene – a constituent of magnolia flowers. Phytochemistry 42:999–1004

    Google Scholar 

  • Azuma H, Thien LB, Kawano S (1999) Floral scents, leaf volatiles and thermogenic flowers in magnoliaceae. Plant Species Biol 14:121–127

    Google Scholar 

  • Baker HG (1973) Evolutionary relationships between flowering plants and animals in American and African forests. In: Meggers BJ, Ayensu ES, Duckworth WD (eds) Tropical forest ecosystems in Africa and south America: a comparative review. Smithsonian Institution Press, Washington, DC, pp 145–159, Chap. 11

    Google Scholar 

  • Baker HG (1977) Non-sugar non-sugar chemical constituents of nectar. Apidologie 8(4):349–356

    Google Scholar 

  • Baker HG (1978) Chemical aspects of the pollination biology of woody plants in the tropics. In: Tomlinson PB, Zimmermann M (eds) Tropical tress as living systems. Cambridge University Press, New York

    Google Scholar 

  • Baker HG, Baker I (1973a) Amino acids in nectar and their evolutionary significance. Nature (London) 241:543–545

    CAS  Google Scholar 

  • Baker HG, Baker I (1973b) Some anthecological aspects of the evolution of nectarproducing flowers, particularly amino acid production in nectar. In: Heywood VH (ed) Taxonomy and ecology. Academic, London, pp 243–264, Chap. 12

    Google Scholar 

  • Baker HG, Baker I (1975) Studies of nectar-constitution and pollinator-plant coevolution. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 100–140

    Google Scholar 

  • Baker I, Baker HG (1976a) Analyses of amino acids in flower nectars of hybrids and their parents, with phylogenetic implications. New Phytol 76:87–98

    Google Scholar 

  • Baker L, Baker HG (1976b) Analysis of amino acids in nectar. Phytochem Bull 9:4–7

    Google Scholar 

  • Baker HG, Baker L (1977) Intraspecific constancy of floral nectar amino acid complements. Bot Gaz 138:183–191

    CAS  Google Scholar 

  • Baker HG, Baker I (1986) The occurrence and significance of amino acids in floral nectar. Plant Syst Evol 151:175–186

    CAS  Google Scholar 

  • Baker HC, Baker I (1990) The predictive value of nectar chemistry to the recognition of pollinator types. Israel J Bot 39:157–166

    CAS  Google Scholar 

  • Baker HC, Hurd PD (1968) Intrafloral ecology. Annu Rev Entornol 13:385–414

    Google Scholar 

  • Barbier M (1970) Chemistry and biochemistry of pollens. In: Reinhold L, Lipschitz I (eds) Progress in phytochemistry, vol 2. Wiley, London, pp 1–34

    Google Scholar 

  • Barker RJ, Lehner Y (1976) Galactose, a sugar toxic to honey bees, found in exudate of tulip flowers. Apidologie 7:109–111

    CAS  Google Scholar 

  • Beach JH (1982) Beetle pollination of Cyclanthus bipartitus (Cyclanthaceae). Am J Bot 69:1074–1081

    Google Scholar 

  • Beale GH (1941) Gene relations and synthetic processes. J Genet 42:197–214

    Google Scholar 

  • Beath DDN (1996) Pollination of Amorphophallus johnsonii (Araceae) by carrion beetles (Phaeochrous amplus) in a Ghanaian rain forest. J Trop Ecol 12:409–418

    Google Scholar 

  • Beattie AJ (1991) Problems outstanding in ant–plant interaction research. In: Huxley CR, Cutler DF (eds) Ant–plant interactions. Oxford Science, Oxford, pp 559–576

    Google Scholar 

  • Bentley BL (1977) Extrafloral nectaries and protection by pugnacious bodyguards. Annu Rev Ecol Syst 8:407–427

    CAS  Google Scholar 

  • Bergström G (1978) Role of volatile chemicals in ophrys-pollinator interactions. In: Harborne G (ed) Biochemical aspects of plant and animal coevolution. Academic, New York, pp 207–230

    Google Scholar 

  • Bestmann HJ, Winkler L, von Helversen O (1997) Headspace analysis of flower scent constituents of bat-pollinated plants. Phytochemistry 46:1169–1172

    PubMed  CAS  Google Scholar 

  • Borg-Karlson A-K, Bergström G, Groth I (1985) I. Volatile compounds of Ophrys lutea and O. fusca as insect mimetic attractants/excitants. Chem Scripta 25:283–294

    CAS  Google Scholar 

  • Borg-Karlson A-K, Groth I, Ã…gren L, Kullenberg B (1993) Evidence of sympatric speciation? Chemoecology 4(1):39–45

    CAS  Google Scholar 

  • Borg-Karlson AK, Valtorova I, Nilsson LA (1994) Volatile compounds from flowers of 6 species in the family apiaceae – bouquets for different pollinators. Phytochemistry 35(1):111–119

    CAS  Google Scholar 

  • Chittka L, Spaethe J, Schmidt A, Heckelsberger A (2001) Adaptation, constraint, and chance in the evolution of flower colour and pollinator colour vision. In: Chittka L, Thompson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 106–126

    Google Scholar 

  • Clinch PG, Palmer-Jones T, Forster IW (1972) Effect on honey bees of nectar from the yellow kowhai (Sophora microphylla Ait.). N Z J Agr Res 15:194–201

    Google Scholar 

  • Cohen D, Shmida A (1993) The evolution of flower display and reward. Evol Biol 27:197–243

    Google Scholar 

  • Crowe L (1964) Evolution of outbreeding in plants. I. The angiosperms. Heredity 19:435–457

    Google Scholar 

  • Dafni A, Lehrer M, Kevan PG (1997) Spatial flower parameters and insect spatial vision. Biol Rev 72:239–282

    Google Scholar 

  • Deinzer ML, Thomson PA, Burgett DM, Isaacson DL (1977) Pyrrolizidine alkaloids: their occurrence in honey from tansy ragwort (Senecio jacobaea L.). Science 195:497–499

    PubMed  CAS  Google Scholar 

  • Dement WA, Raven PH (1974) Pigments responsible for ultraviolet patterns in flowers of Oenothera (Onagraceae). Nature (London) 252:705–706

    CAS  Google Scholar 

  • Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18

    CAS  Google Scholar 

  • Diamond JM (1989) Hot sex in Voodo lilies. Nature (London) 339:258–259

    Google Scholar 

  • Dobson HEM, Bergström J, Bergström G, Groth I (1987) Pollen and flower volatiles in two Rosa species. Phytochemistry 26:3171–3173

    CAS  Google Scholar 

  • Dobson HEM, Arroyo J, Bergstrom G, Groth I (1997) Interspecific variation in floral. Biochem Syst Ecol 25:685–706

    CAS  Google Scholar 

  • Dodson CH (1975) Coevolution of orchids and bees. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. Texas University Press, Austin, pp 91–99

    Google Scholar 

  • Ecroyd CE, Franich RA, Kroese HW, Steward D (1995) Volatile constituents of Cactylanthus. Phytochemistry 40:1387–1389

    CAS  Google Scholar 

  • Eisikowitch D, Lazar Z (1987) Flower change in Oenolhera drummondii Hooker as a response to pollinators’ visits. Bot J Linn Soc 95:101–111

    Google Scholar 

  • Eisner T, Eisner M, Hyypio PA, Aneshansley ID, Silbersgleid RE (1973) Plant taxonomy: ultraviolet patterns of flowers visible as fluorescent patterns of flowers. Science 179:486

    PubMed  CAS  Google Scholar 

  • Eschler BM, Pass DM, Willis R, Foley W (2000) Distribution of foliar formylated phloroglucinol derivatives amongst Eucalyptus species. Biochem Syst Ecol 28:813–824

    PubMed  CAS  Google Scholar 

  • Faegri K, van der PijI L (1979) Principles of pollination ecology, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Gardener MC, Gillman MP (2008) The taste of nectar – a neglected area of pollination ecology. Oikos 98(3):552–557

    Google Scholar 

  • Goodwin TW (ed) (1988) Plant pigments. Academic, London

    Google Scholar 

  • Gottsberger G (1990) Flowers and beetles in the South-American tropics. Bot Acta 103(4):360–365

    Google Scholar 

  • Grant V (1971) Plant speciation. Columbia University Press, New York, 435 pp

    Google Scholar 

  • Grant V, Grant KA (1965) Flower pollination in the phlox family. Columbia University Press, New York

    Google Scholar 

  • Grant V, Grant KA (1983) Behavior of hawkmoths on flowers of Datura metaloides. Bot Gaz 144:280–284

    Google Scholar 

  • Harborne JB (1967) Comparative biochemistry of the flavonoids. Academic, London, 383 pp

    Google Scholar 

  • Harborne JB (1988) The flavonoids: recent advances. In: Goodwin TW (ed) Plant pigments. Academic, London, pp 299–344

    Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic, London

    Google Scholar 

  • Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18:361–379, 361

    PubMed  CAS  Google Scholar 

  • Harborne JB, Boardley M (1983) Identification of two gossypetin monomethyl ethers as yellow flower pigments in the Rutaceae. Z Naturforsch 38c:148–150

    CAS  Google Scholar 

  • Harborne JB, Nash RJ (1983) Flavonoid pigments responsible for ultraviolet patterning in petals of the genus potentilla. Biochem Syst Ecol 12:315–319

    Google Scholar 

  • Harborne JB, Smith DM (1978a) Correlations between anthocyanin chemistry and pollination ecology in the polemoniaceae. Biochem Syst Ecol 6(2):127–130

    CAS  Google Scholar 

  • Harborne JB, Smith DM (1978b) Anthochlors and other flavonoids as honey guides in the Compositae. Biochem Syst Ecol 6:287–291

    CAS  Google Scholar 

  • Harborne JB, Heywood VF-I, King L (1976) Flavonoid sulphates in the umbelliferae. Biochem Syst Ecol 4:111–115

    CAS  Google Scholar 

  • Harrewijn P, Minks KA, Mollema C (1995) Evolution of plant volatile production in insect-plant relationships. Chemoecology 5/6:55–74

    Google Scholar 

  • Hickman JC (1974) Pollination by ants – a low energy system. Science 184:1290

    PubMed  CAS  Google Scholar 

  • Honda K, Omura H, Hayashi N (1998) Identification of floral volatiles from Ligustrum japonicum that stimulate flower-visiting by cabbage butterfly, Pieris rapa. J Chem Ecol 24:2167–2180

    CAS  Google Scholar 

  • Horovitz A, Cohen Y (1972) Ultraviolet reflectance characteristics in flowers of crucifers. Am J Bot 59:706–713

    Google Scholar 

  • Jakobsen HB, Friis P, Nielsen JK, Olsen CE (1994) Emission of volatiles from flowers and leaves of Brassica napus in situ. Phytochemistry 37:695–699

    CAS  Google Scholar 

  • Jones CE, Little RJ (1983) Handbook of experimental pollination biology. Scientific and Academic Editions, New York, pp 558

    Google Scholar 

  • Kaiser R (1993) The scent of orchids: olfactory and chemical investigations. Elsevier, Amsterdam

    Google Scholar 

  • Kay QON, Daoud HS, Stirton CH (1981) Pigment distribution, light reflection and cell structure in petals. Bot J Linn Soc 83:57–84

    CAS  Google Scholar 

  • Keeler KH (1980) The extrafloral nectaries of Ipomoea leptophylla. (Convolvulaceae). Am J Bot 67:216–222

    CAS  Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Enlomol 28:407–453

    Google Scholar 

  • Kite GC (1995) The floral odour of Arum maculatum. Biochem Syst Ecol 23(4):343–354

    CAS  Google Scholar 

  • Kite GC, Hetterschieid WLA (1997) Inflorescence odours of Amorphophallus and Pseudodracontium (Araceae). Phytochemistry 46:1169–1172

    Google Scholar 

  • Kite GC, Smith SAL (1997) Inflorescence odour of senecio articulatus: temporal variation in isovaleric acid levels. Phytochemistry 45(6):1135–1138

    CAS  Google Scholar 

  • Knudsen JT (1994) Floral scent composition in Pyrola rotundifolia complex in Scandinavia and Western Greenland. Nord J Bot 14:277–282

    Google Scholar 

  • Knudsen JT, Stahl B (1994) Floral odours in the Theophrastaceae. Biochem Syst Ecol 22:259–268

    CAS  Google Scholar 

  • Knudsen JT, Tollsten L (1995) Floral scent in bat-pollinated plants: a case of convergent evolution. Bot J Linn Soc 119:45–57

    Google Scholar 

  • Kuanprasert N, Kuehnle AR, Tang CS (1998) Floral fragrance compounds of Anthurium (Araceae) species and hybrids. Phytochemistry 49:521

    CAS  Google Scholar 

  • Kullenberg B (1952) Recherches sur la bio- logie florale des Ophrys. Bull Soc Hist Nat Afrique Nord 43:53–62

    Google Scholar 

  • Kullenberg B, Bergstrom G (1975) Chemical communication between living organisms. Endeavour 34:59–66

    PubMed  CAS  Google Scholar 

  • Lindroth RL, Weisbrod AV (1991) Genetic variation in response of the gypsy moth to aspen phenolic glycosides. Biochem Syst Ecol 19:97–103

    CAS  Google Scholar 

  • Macior LW (1986) Floral resource sharing by bumblebees and hummingbirds in pedicularis (Scrophulariaceae) pollination. Bull Torrey Bot Club 113:101–109

    Google Scholar 

  • Metcalf RL, Lampman RL, Deem-Dickson L (1995) Indole as an olfactory synergist for volatile kairomones for diabroticite beetles. J Chem Ecol 21:1149–1162

    CAS  Google Scholar 

  • Nilsson LA (1983) Mimesis of bellflower (Campanula) by the red helleborine orchid Cephalanthera rubra. Nature 305:799–800

    Google Scholar 

  • Ollerton J, Diaz A (1999) Evidence for stabilising selection acting on flowering time in Arum maculatum (Araceae): the influence of phylogeny on adaptation. Oecologia 119(3):340–348

    Google Scholar 

  • Paige KN, Whitham TG (1985) Individual and population shifts in flower color by scarlet gilia: a mechanism for pollinator. Science 227:315–317

    PubMed  CAS  Google Scholar 

  • Palto RJ, Anderson SK, Iason G (1993) Niche separation in two species of hare. Metabolic costs of plant phenolics. Chemoecology 4:153

    Google Scholar 

  • Pass DM, Foley WJ, Bowden B (1998) Vertebrate herbivory on Eucalyptus – identification of specific feeding deterrents for common ringtail possums (Pseudocheirus peregrinus) by bioas-say-guided fractionation of Eucalyptus ovata foliage. J Chem Ecol 24:1513–1527

    CAS  Google Scholar 

  • Paulus HF (1988) Co-evolution and unilateral adaptations in flower-pollinator systems: pollinators as pacemakers in the evolution of flowers. Verh Dtsch Zoologischen Ges 81:25–46

    Google Scholar 

  • Pellmyr O, Thien LB (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35(1):76–85

    Google Scholar 

  • Percival MS (1961) Types of nectar in angiosperms. New Phytol 60:235–281

    Google Scholar 

  • Piattelli M (1976) Betalains. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, 2nd edn. Academic, London, pp 560–596

    Google Scholar 

  • Proctor M, Yeo P (1973) The pollination of flowers. Collins, London

    Google Scholar 

  • Pryce-Jones J (1944) Some problems associated with nectar, pollen and honey. Proc Linn Soc Lond 1944:129–174

    Google Scholar 

  • Raguso RA, Pellmyr O (1998) Dynamic headspace analysis of floral volatiles: a comparison of methods. Oikos 81(2):238–254

    CAS  Google Scholar 

  • Raskin I, Ehmann A, Melander WR, Meeuse BJD (1987) Salicylic acid: a natural inducer of heat production in Arum lilies. Science 237:1601–1602

    PubMed  CAS  Google Scholar 

  • Real L (ed) (1983) Pollination biology. Academic, Orlando, 338 pp

    Google Scholar 

  • Reichardt PB, Bryant JP, Mattes BR, Clausen TP, Chapin FS, Meyer M (1990) Winter chemical defense of Alaskan balsam poplar against snowshoe hares. J Chem Ecol 16:1941–1959

    CAS  Google Scholar 

  • Richards AI (ed) (1978) The pollination of flowers by insects. Academic, London, 213 pp

    Google Scholar 

  • Risch SJ, Rickson FR (1981) Mutualism in which ants must be present before plants produce food bodies. Nature 291:149–150

    Google Scholar 

  • Saito N, Harborne JB (1983) A cyanidin glycoside giving scarlet coloration in plants of the Bromeliaceae. Phytochemistry 22(8):1735–1740

    CAS  Google Scholar 

  • Saito N, Harborne JB (1992) Correlations between anthocyanin type, pollinator and flower colour in the Labiatae. Phytochemistry 31:3009–3015

    CAS  Google Scholar 

  • Sakai S, Inoue T (1999) A new pollination system: dung-beetle pollination discovered in Orchidantha inouei (Lowiaceae, Zingiberales) in Sarawak, Malaysia. Am J Bot 86(1):56–61

    PubMed  CAS  Google Scholar 

  • Scogin R, Zakar K (1976) Anthochlor pigments and floral UV patterns in the genus Bidens. Biochem Syst Ecol 4:165–167, 190. Scott, A. I. 1964

    CAS  Google Scholar 

  • Seymour RS, Schultze-Motel P (1997) Heat-producing flowers. Endeavour 21(3):125–129

    Google Scholar 

  • Shisaisai A, Kuwabara M (1970) The effect of amino acids on the labellar hair chemosensory cells of the fly. J Gen Physiol 56:768–782

    Google Scholar 

  • Simpson BB, Neff JL, Seigler D (1977) Krameria, freefatty acids and oil-collecting bees. Nature 267:150–151

    PubMed  CAS  Google Scholar 

  • Skubatz H, Kunkel DD, Howald WN, Trenkle R, Mookhergee B (1996) The Sauromatum guttatum appendix as an osmophore: excretory pathways, composition of volatiles and attractiveness to insects. New Phytol 134(4):631–640

    CAS  Google Scholar 

  • Stanley G, Linskens HF (1974) Pollen: biology biochemistry and management. Springer, Berlin, 307 pp

    Google Scholar 

  • Stephenson AG (1982) Toxic nectar deters nectar thieves of Catalpa speciosa … speciosa are unpalatable to nectar thieves. J Chem Ecol 8:1025–1034

    CAS  Google Scholar 

  • Stránský K, Valterová I (1999) Release of volatiles during the flowering period of Hydrosome rivieri (Araceae). Phytochemistry 52(8):1387–1390

    Google Scholar 

  • Sunnerheim-Sjoberg K, Knutsson P-G (1995) Platyphylloside: metabolism and digestibility reduction in vitro. J Chem Ecol 21:1339–1348

    Google Scholar 

  • Tengo J, Bergstrom G (1977) Cleptoparasitism and odor mimetism in bees: do Nomada males imitate the odor of Andrena females? Science 196:1117–1119

    PubMed  CAS  Google Scholar 

  • Thien L, Bemhardt P, Gibbs CW, Pellmyr O, Bergstrom G, Groth I, McPherson G (1985) The pollination of Zygogynum (Winteraceae) by a moth, Sabatinca (Micropterigidae): an ancient association? Science 227:540

    PubMed  CAS  Google Scholar 

  • Thompson WR, Meinwald J, Aneshanslet D, Eisner T (1972) Flavonols: pigments responsible for ultraviolet absorption in nectar guide of flower. Science 177:528–530

    PubMed  CAS  Google Scholar 

  • Tollsten L, Knudsen JT, Bergström LG (1994) Floral scent in generalistic Angelica (Apiaceae): an adaptive character? Biochem Syst Ecol 22:161–169

    CAS  Google Scholar 

  • Tollston L, Bergstrom G (1993) Fragrance chemotypes of Platanthera (Orchidaceae): the result of adaptation to pollinating moths. Nord J Bot 13:607–613

    Google Scholar 

  • van der Pijl L (1961) Ecological aspects of flower evolution. II. Zoophilous flower classes. Evolution 15:44–59

    Google Scholar 

  • Vereecken NJ, Schiestl FP (2009) On the roles of colour and scent in a specialized floral mimicry system. Ann Bot 104(6):1077–1084

    PubMed  Google Scholar 

  • Vogel S (1969) Flowers offering fatty oil instead of nectar. In: Abstracts, XI. International botanical congress, Seattle, p 229

    Google Scholar 

  • Vogel S (1974) Olblumen und 6lsammelnde Biene. Trop Subtrop Pflanzenw 7:283–547

    Google Scholar 

  • Vogel S (1976a) Lysimachia: Olblumen der Holarktis. Naturwissenschaften 63:44–45

    Google Scholar 

  • Vogel S (1976b) Oil collecting bees of the old world and their flowers. Naturwissenschaften 67:627–628, 84

    Google Scholar 

  • Vogel S (1978) Floral ecology report on the years 1974 (73) to 1978. Prog Bot 40:453–481

    Google Scholar 

  • Vogt T, Pollak P, Tarlyn N, Taylor LP (1994) Pollination- or wound-induced kaempferol accumulation in petunia stigmas enhances seed production. Plant Cell 6:11–23

    PubMed  CAS  Google Scholar 

  • von Frisch K (1950) Bees, their vision, chemical senses and language. Cornell, Ithaca

    Google Scholar 

  • Waser NM, Ollerton J (2006) Plant-pollinator interactions from specialization to generalization. University of Chicago Press, Chicago, pp 488

    Google Scholar 

  • Waser NM, Price MV (1981) Pollinator choice and stabilizing selection for flower color in Delphinium nelsonii. Evolution 35:376–390

    Google Scholar 

  • Waser NM, Price MV (1983) Pollinator behaviour and natural selection for flower colour in Delphinium nelsonii. Nature 302:422–424

    Google Scholar 

  • Watt WB, Hoch PC, Mills SG (1974) Nectar resource use by colias butterflies: chemical and visual aspects. Oecologia (Berl) 14:353–374

    Google Scholar 

  • Weiss MR (1991) Floral colour changes as cues for pollinators. Nature 354:227–229

    Google Scholar 

  • Whitten WM, Williams NH, Armbruster WS, Battiste MA, Strekowski L, Lindquist N (1986) Carvone oxide: an example of convergent evolution in euglossine pollinated plants. Syst Bot 11(1):222–228

    Google Scholar 

  • Wyatt R (1983) Pollinator–plant interactions and the evolution of breeding systems. In: Real L (ed) Pollination biology. Academic, Orlando, pp 51–96

    Google Scholar 

  • Zeigler H (1956) Untersuchungen fiber die Leitung und Sekretion der Assimilate. Planta (Berl) 47:447–500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharam P. Abrol .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abrol, D.P. (2012). Biochemical Basis of Plant-Pollination Interaction. In: Pollination Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1942-2_13

Download citation

Publish with us

Policies and ethics