Skip to main content

Bystander Effects and Adaptive Responses Modulate In Vitro and In Vivo Biological Responses to Low Dose Ionizing Radiation

  • Conference paper
  • First Online:
Radiobiology and Environmental Security

Abstract

We have utilized cellular and molecular approaches to characterize biological effects that are induced in normal mammalian cells and tissues exposed to low doses/low fluences of ionizing radiations that differ in their quality (i.e. linear energy transfer; LET). In human cells exposed to particulate radiations with high, but not low, LET character, the induced stressful effects were not only confined to the cells that have been directly targeted by the radiation, but involved a number of non-targeted and delayed effects. Chromosomal damage and oxidative changes in proteins and lipids were detected in cells exposed to alpha and high charge and high energy (HZE) particles and in their neighboring bystanders. Signaling events mediated via inflammatory cytokines and/or intercellular channels that comprise gap junctions were critical for the expression of the induced non-targeted effects. With relevance to health risks, the stressful changes in bystander cells were propagated to their progeny. In contrast, induced DNA repair and antioxidant defense mechanisms often attenuated the basal level of DNA damage and oxidative stress to below the spontaneous rate in tissues of animals and in cultured rodent and human cells exposed to low dose/low dose-rate γ rays, a low LET radiation. Together, our data suggest that low dose radiation-induced signaling events act to alter the linearity of the dose-response relation that is predicted by biophysical arguments. They show that the nature of the altered responses strongly depend on radiation quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler V, Yin Z, Tew KD, Ronai Z (1999) Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18(45):6104–6111

    Article  CAS  Google Scholar 

  2. Autsavapromporn N, De Toledo SM, Little JB, Jay-Gerin JP, Harris AL, Azzam EI (2011) The role of gap-junction communication and oxidative stress in the propagation of toxic effects among high dose alpha particle-irradiated human cells. Radiat Res 175(3):347–357

    Article  CAS  Google Scholar 

  3. Averbeck D (2009) Does scientific evidence support a change from the LNT model for low-dose radiation risk extrapolation? Health Phys 97(5):493–504

    Article  CAS  Google Scholar 

  4. Azzam EI, de Toledo SM, Raaphorst GP, Mitchel RE (1994) Réponse adaptative au rayonnement ionisant des fibroblastes de peau humaine. Augmentation de la vitesse de réparation de l’ADN et variation de l’expression des gènes. J Chim Phys 91(7/8):931–936

    CAS  Google Scholar 

  5. Azzam EI, Raaphorst GP, Mitchel RE (1994) Radiation-induced adaptive response for protection against micronucleus formation and neoplastic transformation in C3H 10 T1/2 mouse embryo cells. Radiat Res 138(1 Suppl):S28–S31

    Article  CAS  Google Scholar 

  6. Azzam EI, de Toledo SM, Raaphorst GP, Mitchel RE (1996) Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10 T1/2 cells. Radiat Res 146(4):369–373

    Article  CAS  Google Scholar 

  7. Azzam EI, de Toledo SM, Gooding T, Little JB (1998) Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat Res 150:497–504

    Article  CAS  Google Scholar 

  8. Azzam EI, de Toledo SM, Little JB (2001) Direct evidence for the participation of gap-junction mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to non-irradiated cells. Proc Natl Acad Sci USA 98(2):473–478

    Article  CAS  Google Scholar 

  9. Azzam EI, de Toledo SM, Spitz DR, Little JB (2002) Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures. Cancer Res 62(19):5436–5442

    CAS  Google Scholar 

  10. Azzam EI, de Toledo SM, Little JB (2003) Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene 22(45):7050–7057

    Article  CAS  Google Scholar 

  11. Azzam EI, de Toledo SM, Little JB (2003) Expression of CONNEXIN43 is highly sensitive to ionizing radiation and environmental stresses. Cancer Res 63(21):7128–7135

    CAS  Google Scholar 

  12. BEIR-VI (1998) Health effects of exposure to radon (BEIR VI). National Academy Press, Washington, DC

    Google Scholar 

  13. BEIR-VII (2005) Health risks from exposure to low levels of ionizing radiation. National Research Council of the National Academies, Washington, DC

    Google Scholar 

  14. Bevans CG, Kordel M, Rhee SK, Harris AL (1998) Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 273(5):2808–2816

    Article  CAS  Google Scholar 

  15. Bishayee A, Hill HZ, Stein D, Rao DV, Howell RW (2001) Free-radical initiated and gap junction-mediated bystander effect due to nonuniform distribution of incorporated radioactivity in a three-dimensional tissue culture model. Radiat Res 155:335–344

    Article  CAS  Google Scholar 

  16. Blackburn RV, Spitz DR, Liu X, Galoforo SS, Sim JE, Ridnour LA, Chen JC, Davis BH, Corry PM, Lee YJ (1999) Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic Biol Med 26(3–4):419–430

    Article  CAS  Google Scholar 

  17. Blyth BJ, Azzam EI, Howell RW, Ormsby RJ, Staudacher AH, Sykes PJ (2010) An adoptive transfer method to detect low-dose radiation-induced bystander effects in vivo. Radiat Res 173(2):125–137

    Article  CAS  Google Scholar 

  18. Boyd M, Sorensen A, McCluskey AG, Mairs RJ (2008) Radiation quality-dependent bystander effects elicited by targeted radionuclides. J Pharm Pharmacol 60(8):951–958

    Article  CAS  Google Scholar 

  19. Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    Article  CAS  Google Scholar 

  20. Buonanno M, De Toledo SM, Pain D, Azzam EI (2011) Long-term consequences of radiation-induced Bystander effects depend on radiation quality and dose and correlate with oxidative stress. Radiat Res 175(4):405–415

    Article  CAS  Google Scholar 

  21. Burdon RH (1996) Control of cell proliferation by reactive oxygen species. Biochem Soc Trans 24(4):1028–1032

    CAS  Google Scholar 

  22. Cai L, Liu SZ (1990) Induction of cytogenetic adaptive response of somatic and germ cells in vivo and in vitro by low-dose X-irradiation. Int J Radiat Biol 58(1):187–194

    Article  CAS  Google Scholar 

  23. Coates PJ, Robinson JI, Lorimore SA, Wright EG (2008) Ongoing activation of p53 pathway responses is a long-term consequence of radiation exposure in vivo and associates with altered macrophage activities. J Pathol 214(5):610–616

    Article  CAS  Google Scholar 

  24. Criswell KA, Loch-Caruso R (1995) Lindane-induced elimination of gap junctional communication in rat uterine monocytes is mediated by an arachdonic acid-sensitive cAMP-independent mechanism. Toxicol Appl Pharmacol 135:127–138

    Article  CAS  Google Scholar 

  25. Cucinotta FA, Chappell LJ (2010) Non-targeted effects and the dose response for heavy ion tumor induction. Mutat Res 687(1–2):49–53

    CAS  Google Scholar 

  26. Cucinotta FA, Wu H, Shavers MR, George K (2003) Radiation dosimetry and biophysical models of space radiation effects. Gravit Space Biol Bull 16(2):11–18

    Google Scholar 

  27. de Toledo SM, Asaad N, Venkatachalam P, Li L, Spitz DR, Azzam EI (2006) Adaptive responses to low-dose/low-dose-rate gamma rays in normal human fibroblasts: the role of growth architecture and oxidative metabolism. Radiat Res 166:849–857

    Article  Google Scholar 

  28. de Toledo SM, Azzam EI (2006) Adaptive and bystander responses in human and rodent cell cultures exposed to low level ionizing radiation: the impact of linear energy transfer. Dose-Response 4(4):291–301

    Article  Google Scholar 

  29. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    CAS  Google Scholar 

  30. Feinendegen LE, Pollycove M, Neumann RD (2007) Whole-body responses to low-level radiation exposure: new concepts in mammalian radiobiology. Exp Hematol 35(4 Suppl 1):37–46

    Article  CAS  Google Scholar 

  31. Feinendegen L, Hahnfeldt P, Schadt EE, Stumpf M, Voit EO (2008) Systems biology and its potential role in radiobiology. Radiat Environ Biophys 47(1):5–23

    Article  Google Scholar 

  32. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    Article  CAS  Google Scholar 

  33. Fournier C, Barberet P, Pouthier T, Ritter S, Fischer B, Voss KO, Funayama T, Hamada N, Kobayashi Y, Taucher-Scholz G (2009) No evidence for DNA and early cytogenetic damage in bystander cells after heavy-ion microirradiation at two facilities. Radiat Res 171(5):530–540

    Article  CAS  Google Scholar 

  34. Gerashchenko BI, Howell RW (2003) Cell proximity is a prerequisite for the proliferative response of bystander cells co-cultured with cells irradiated with gamma-rays. Cytometry 56A:71–80

    Article  Google Scholar 

  35. Goodhead DT (1988) Spatial and temporal distribution of energy. Health Phys 55:231–240

    Article  CAS  Google Scholar 

  36. Hall EJ (2000) Radiobiology for the radiologist, 5th edn. J. B. Lippincott Co, Philadelphia

    Google Scholar 

  37. Hamada N, Maeda M, Otsuka K, Tomita M (2011) Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects. Curr Mol Pharmacol 4(2):79–95

    Google Scholar 

  38. Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34(3):325–472

    CAS  Google Scholar 

  39. Held KD (2009) Effects of low fluences of radiations found in space on cellular systems. Int J Radiat Biol 85(5):379–390

    Article  CAS  Google Scholar 

  40. Howell RW, Neti PV, Pinto M, Gerashchenko BI, Narra VR, Azzam EI (2006) Challenges and progress in predicting biological responses to incorporated radioactivity. Radiat Prot Dosimetry 122(1–4):521–527

    CAS  Google Scholar 

  41. Jain MR, Li M, Chen W, Liu T, de Toledo SM, Pandey BN, Li H, Rabin BM, Azzam EI (2011) In vivo space radiation-induced non-targeted responses: late effects on molecular signaling in mitochondria. Curr Mol Pharmacol 4(2):106–14

    Google Scholar 

  42. Jay-Gerin JP, Meesungnoen J, Banville P, Mankhetkorn S (2003) Comment on “The radiation-induced lesions which trigger the bystander effect” by J.F. Ward [Mutat. Res. 499 (2002) 151–154]. Mutat Res 525(1–2):125–127

    CAS  Google Scholar 

  43. Jensen R, Glazer PM (2004) Cell-interdependent cisplatin killing by Ku/DNA-dependent protein kinase signaling transduced through gap junctions. Proc Natl Acad Sci USA 101(16):6134–6139

    Article  CAS  Google Scholar 

  44. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262

    Article  CAS  Google Scholar 

  45. Joiner MC, Lambin P, Malaise EP, Robson T, Arrand JE, Skov KA, Marples B (1996) Hypersensitivity to very-low single radiation doses: its relationship to the adaptive response and induced radioresistance. Mutat Res 358(2):171–183

    Google Scholar 

  46. Khan MA, Hill RP, Van Dyk J (1998) Partial volume rat lung irradiation: an evaluation of early DNA damage. Int J Radiat Oncol Biol Phys 40(2):467–476

    Article  CAS  Google Scholar 

  47. Klammer H, Kadhim M, Iliakis G (2010) Evidence of an adaptive response targeting DNA nonhomologous end joining and its transmission to bystander cells. Cancer Res 70(21):8498–8506

    Article  CAS  Google Scholar 

  48. Koturbash I, Kutanzi K, Hendrickson K, Rodriguez-Juarez R, Kogosov D, Kovalchuk O (2008) Radiation-induced bystander effects in vivo are sex specific. Mutat Res 642(1–2):28–36

    CAS  Google Scholar 

  49. Lampe PD, Lau AF (2000) Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384(2):205–215

    Article  CAS  Google Scholar 

  50. Lehnert BE, Goodwin EH (1997) Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Res 57:2164–2171

    CAS  Google Scholar 

  51. Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13(10):1137–1143

    CAS  Google Scholar 

  52. Li R, Mather JP (1997) Lindane, an inhibitor of gap junction formation, abolishes oocyte directed follicle organizing activity in vitro. Endocrinology 138(10):4477–4480

    Article  CAS  Google Scholar 

  53. Liou HC, Baltimore D (1993) Regulation of the NF-kappa B/rel transcription factor and I kappa B inhibitor system. Curr Opin Cell Biol 5(3):477–487

    Article  CAS  Google Scholar 

  54. Little JB (2003) Genomic instability and bystander effects: a historical perspective. Oncogene 22(45):6978–6987

    Article  CAS  Google Scholar 

  55. Lorimore SA, Coates PJ, Scobie GE, Milne G, Wright EG (2001) Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene 20(48):7085–7095

    Article  CAS  Google Scholar 

  56. Mancuso M, Pasquali E, Leonardi S, Tanori M, Rebessi S, Di Majo V, Pazzaglia S, Toni MP, Pimpinella M, Covelli V, Saran A (2008) Oncogenic bystander radiation effects in patched heterozygous mouse cerebellum. Proc Natl Acad Sci USA 105(34):12445–12450

    Article  CAS  Google Scholar 

  57. Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, Kitai R, Ohnishi T, Kano E (2001) Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res 155(3):387–396

    Article  CAS  Google Scholar 

  58. Matsumoto H, Hamada N, Takahashi A, Kobayashi Y, Ohnishi T (2007) Vanguards of paradigm shift in radiation biology: radiation-induced adaptive and bystander responses. J Radiat Res (Tokyo) 48(2):97–106

    Article  CAS  Google Scholar 

  59. Mitchel RE, Jackson JS, McCann RA, Boreham DR (1999) The adaptive response modifies latency for radiation-induced myeloid leukemia in CBA/H mice. Radiat Res 152(3):273–279

    Article  CAS  Google Scholar 

  60. Morgan WF (2003) Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 159(5):567–580

    Article  CAS  Google Scholar 

  61. Mothersill C, Saroya R, Smith RW, Singh H, Seymour CB (57) Serum serotonin levels determine the magnitude and type of bystander effects in medium transfer experiments. Radiat Res 174(1):119–123

    Article  Google Scholar 

  62. Mothersill C, Seymour CB (2004) Radiation-induced bystander effects–implications for cancer. Nat Rev Cancer 4(2):158–164

    Article  CAS  Google Scholar 

  63. Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 52:6394–6396

    CAS  Google Scholar 

  64. Oh SY, Dupont E, Madhukar BV, Briand JP, Chang CC, Beyer E, Trosko J (1993) Characterization of gap junctional communication-deficient mutants of a rat liver epithelial cell line. Eur J Cell Biol 60:250–255

    CAS  Google Scholar 

  65. Olivieri G, Bodycote J, Wolff S (1984) Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science 223(4636):594–597

    Article  CAS  Google Scholar 

  66. Pinto M, Azzam EI, Howell RW (2006) Bystander responses in three-dimensional cultures containing radiolabeled and unlabeled human cells. Radiat Prot Dosimetry 122(1–4):252–255

    CAS  Google Scholar 

  67. Prise KM, O’Sullivan JM (2009) Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9(5):351–360

    Article  CAS  Google Scholar 

  68. Redpath JL, Antoniono RJ (1998) Induction of an adaptive response against spontaneous neoplastic transformation in vitro by low-dose gamma radiation. Radiat Res 149(5):517–520

    Article  CAS  Google Scholar 

  69. Samson L, Cairns J (1977) A new pathway for DNA repair in Escherichia coli. Nature 267(5608):281–283

    Article  CAS  Google Scholar 

  70. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10(8):2247–2258

    CAS  Google Scholar 

  71. Schulze-Osthoff K, Bauer M, Vogt M, Wesselborg S, Baeuerle PA (1997) Reactive oxygen intermediates as primary signals and second messengers in the activation of transcription factors. In: Forman HJ, Cadenas E (eds) Oxidative stress and signal transduction. Chapman & Hall, New York, pp 239–259

    Chapter  Google Scholar 

  72. Shadley JD (1994) Chromosomal adaptive response in human lymphocytes. Radiat Res 138(1 Suppl):S9–S12

    Article  CAS  Google Scholar 

  73. Shao C, Stewart V, Folkard M, Michael BD, Prise KM (2003) Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res 63(23):8437–8442

    CAS  Google Scholar 

  74. Sowa MB, Goetz W, Baulch JE, Pyles DN, Dziegielewski J, Yovino S, Snyder AR, de Toledo SM, Azzam EI, Morgan WF (2010) Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells. Int J Radiat Biol 86(2):102–113

    Article  CAS  Google Scholar 

  75. Sowa MB, Goetz W, Baulch JE, Lewis AJ, Morgan WF (2011) No evidence for a low linear energy transfer adaptive response in irradiated Rko cells. Radiat Prot Dosimetry 143(2–4):311–314

    Article  CAS  Google Scholar 

  76. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ (2000) Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann N Y Acad Sci 899:349–362

    Article  CAS  Google Scholar 

  77. Spitz DR, Azzam EI, Li JJ, Gius D (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 23(3–4):311–322

    Article  CAS  Google Scholar 

  78. Szumiel I (2005) Adaptive response: stimulated DNA repair or decreased damage fixation? Int J Radiat Biol 81(3):233–241

    Article  CAS  Google Scholar 

  79. Tsushimoto G, Chang CC, Trosko JE, Matsumura F (1983) Cytotoxicity, mutagenic, and cell-cell communication inhibitory properties of DDT, lindane, and chlordane on hamster cells in vitro. Arch Environ Contam Toxicol 12:721–730

    Article  CAS  Google Scholar 

  80. Wardman P (2009) The importance of radiation chemistry to radiation and free radical biology (The 2008 Silvanus Thompson Memorial Lecture). Br J Radiol 82(974):89–104

    Article  CAS  Google Scholar 

  81. Wolff S (1992) Failla Memorial Lecture. Is radiation all bad? The search for adaptation. Radiat Res 131(2):117–123

    Article  CAS  Google Scholar 

  82. Wolff S (1998) The adaptive response in radiobiology: evolving insights and implications. Environ Health Perspect 106(Suppl 1):277–283

    Article  Google Scholar 

  83. Wygoda MR, Wilson MR, Davis MA, Trosko JE, Rehemutulla A, Lawrence TS (1997) Protection of herpes simplex virus thymidine kinase-transduced cells from ganciclovir-mediated cytotoxicity by bystander cells: the good samaritan effect. Cancer Res 57:1699–1703

    CAS  Google Scholar 

  84. Zhou HN, Suzuki M, Randers-Pehrson R, Chen G, Trosko J, Vannais D, Waldren CA, Hall EJ, Hei TK (2001) Radiation risk at low doses may be greater than we thought. Proc Natl Acad Sci USA 98(25):14410–14415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants DE-FG02-07ER64344 from the US Department of Energy (Low Dose Radiation Research Program), CA049062 from the NIH and NNJ06HD91G from NASA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhang or Edouard I. Azzam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Zhang, J. et al. (2012). Bystander Effects and Adaptive Responses Modulate In Vitro and In Vivo Biological Responses to Low Dose Ionizing Radiation. In: Mothersill, C., Korogodina, V., Seymour, C. (eds) Radiobiology and Environmental Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1939-2_8

Download citation

Publish with us

Policies and ethics