Skip to main content

Flavonoid Biosynthesis Genes in Wheat and Wheat-Alien Hybrids: Studies into Gene Regulation in Plants with Complex Genomes

  • Conference paper
  • First Online:
Radiobiology and Environmental Security

Abstract

Pigmentation by flavonoid pigments is the oldest trait employed for studies in genetics. In the current chapter, we describe application of the flavonoid biosynthesis (FB) genes as a model in the study of regulatory-target gene relationships in allopolyploid wheat genome (Triticum aestivum, AABBDD, 2n = 6x = 42) and gene functioning in a foreign background in wheat-alien hybrids. Investigation of this multicomponent gene system showed that FB gene regulation cuts across genomes of allopolyploid wheat, the regulatory FB genes contribute more to the functional divergence between the diploid genomes of allopolyploid wheat than do the structural genes, and a good cooperation of the wheat and alien FB gene systems is observed in wheat-alien hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed N, Maekawa M, Utsugi S, Himi E, Ablet H, Rikiishi K, Noda K (2003) Transient expression of anthocyanin in developing wheat coleoptile by maize c1 and B-peru regulatory genes for anthocyanin synthesis. Breed Sci 52:29–43

    Article  Google Scholar 

  2. Ahmed N, Maekawa M, Utsugi S, Rikiishi K, Ahmad A, Noda K (2006) The wheat Rc gene for red coleoptile colour codes for a transcriptional activator of late anthocyanin biosynthesis genes. J Cereal Sci 44:54–58

    Article  CAS  Google Scholar 

  3. Appleford NE, Evans DJ, Lenton JR, Gaskin P, Croker SJ, Devos KM, Phillips AL, Hedden P (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568–582

    Article  CAS  Google Scholar 

  4. Bahler D, Steffen KL, Orzolek MD (1991) Morphological and biochemical comparison of a purple-leafed and a green-leafed pepper cultivar. Hortscience 26:736

    Google Scholar 

  5. Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  6. Bogdanova ED, Sarbaev AT, Makhmudova KK (2002) Resistance of common wheat to bunt. In: Proceedings of the research conference on genetics. Moscow, Russia, pp 43–44

    Google Scholar 

  7. Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  Google Scholar 

  8. Bottley A, Xia GM, Koebner RM (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906

    Article  CAS  Google Scholar 

  9. Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509–2526

    Article  CAS  Google Scholar 

  10. Bradley JM, Davies KM, Deroles SC, Bloor SJ, Lewis DH (1998) The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of petunia. Plant J 13:381–392

    Article  CAS  Google Scholar 

  11. Brink RA (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41:872–889

    CAS  Google Scholar 

  12. Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  Google Scholar 

  13. Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  14. Chopra S, Hoshino A, Boddu J, Iida S (2008) Flavonoid pigments as tools in molecular genetics. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 147–173

    Google Scholar 

  15. Christensen AB, Gregersen PL, Olsen CE, Collinge DB (1998) A flavonoid 7-O-methyltransferase is expressed in barley leaves in response to pathogen attack. Plant Mol Biol 36:219–227

    Article  CAS  Google Scholar 

  16. Clegg MT, Durbin ML (2000) Flower color variation: a model for the experimental study of evolution. Proc Natl Acad Sci USA 97:7016–7023

    Article  CAS  Google Scholar 

  17. Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B (2000) Phenotypic instability and rapid gene silencing in newly formed arabidopsis allotetraploids. Plant Cell 12:1551–1568

    Article  CAS  Google Scholar 

  18. Darwin C (1883) The variation of animals and plants under domestication. D. Appelton&Co, New York, pp 1–495

    Google Scholar 

  19. Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–414

    Article  CAS  Google Scholar 

  20. Devos KM, Chap S, Li QY, Simonetti MC, Gale MD (1994) Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes. Genetics 138:1287–1292

    CAS  Google Scholar 

  21. Dobrovolskaya OB, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2006) Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364

    Article  CAS  Google Scholar 

  22. Farrant JM (2000) A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol 151:29–39

    Article  Google Scholar 

  23. Flintham JE, Gale MD (1995) Dormancy gene maps in homoeologous cereal genomes. In: Proceedings of 7th international symposium on pre-harvest sprouting in cereals, Osaka, Japan, pp 143–149

    Google Scholar 

  24. Freed RD, Everson EH, Ringlund K, Gullord M (1976) Seed coat color in wheat and the relationship to seed dormancy at maturity. Cereal Res Commun 4:147–149

    Google Scholar 

  25. Gale MD, Flavell RB (1971) The genetic control of anthocyanin biosynthesis by homoeologous chromosomes in wheat. Genet Res Camb 18:237–244

    Article  Google Scholar 

  26. Gfeller F, Svejda F (1960) Inheritance of post-harvest seed dormancy and kernel colour in spring wheat lines. Can J Plant Sci 40:1–6

    Article  Google Scholar 

  27. Giovanini MP, Puthoff DP, Nemacheck JA, Mittapalli O, Saltzmann KD, Ohm HW, Shukle RH, Williams CE (2006) Gene-for-gene defense of wheat against the Hessian fly lacks a classical oxidative burst. Mol Plant Microbe Interact 19:1023–1033

    Article  CAS  Google Scholar 

  28. Gulyaeva ZB (1984) Localization of the genes for pubescence of the glumes and coloration of the auricles in the leaf sheath in winter wheat variety Ul’yanovka. Bull Appl Bot Genet Plant Breed 85:95–96

    Google Scholar 

  29. Himi E, Noda K (2004) Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression. J Exp Bot 55:365–375

    Article  CAS  Google Scholar 

  30. Himi E, Noda K (2005) Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica 143:239–242

    Article  CAS  Google Scholar 

  31. Himi E, Mares DJ, Yanagisawa A, Noda K (2002) Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. J Exp Bot 53:1569–1574

    Article  CAS  Google Scholar 

  32. Himi E, Osaka T, Noda K (2006) Isolation and characterization of wheat ANS genes. GenBank 2006. http://www.ncbi.nlm.nih.gov/sites/entrez?term=himi%20osaka%20noda&cmd=Search&db=nuccore&QueryKey=4

  33. Hoch WA, Singsaas EL, McCown BH (2003) Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiol 133:1296–1305

    Article  CAS  Google Scholar 

  34. Hu J, Anderson B, Wessler R (1996) Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize. Genetics 142:1021–1031

    CAS  Google Scholar 

  35. Izdebski R (1992) Utilization of rye genetic resources – initial material selection. Hereditas 116:179–185

    Google Scholar 

  36. Jha KK (1964) The association of a gene for purple coleoptile with chromosome 7D of common wheat. Can J Genet Cytol 6:370–372

    Google Scholar 

  37. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    CAS  Google Scholar 

  38. Khan M, Cavers PB, Kane M, Thompson K (1996) Role of the pigmented seed coat of proso millet (Panicum miliaceum L.) in imbibition, germination and seed persistence. Seed Sci Res 7:21–25

    Google Scholar 

  39. Khlestkina EK (2010) Regulatory-target gene relationships in allopolyploid and hybrid genomes. In: Urbano KV (ed) Advances in genetics research, vol 3. NOVA Science Publishers, Inc., New York, pp 311–328

    Google Scholar 

  40. Khlestkina EK, Pestsova EG, Röder MS, Börner A (2002) Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor Appl Genet 104:632–637

    Article  CAS  Google Scholar 

  41. Khlestkina EK, Pshenichnikova TA, Röder MS, Arbuzova VS, Salina EA, Börner A (2006) Comparative mapping of genes for glume colouration and pubescence in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 113:801–807

    Article  CAS  Google Scholar 

  42. Khlestkina EK, Röder MS, Salina EA (2008) Relationship between homoeologous regulatory and structural genes in allopolyploid genome – a case study in bread wheat. BMC Plant Biol 8:88

    Article  Google Scholar 

  43. Khlestkina EK, Röder MS, Pshenichnikova TA, Simonov AV, Salina EA, Börner A (2008) Genes for anthocyanin pigmentation in wheat: review and microsatellite-based mapping. In: Verrity JF, Abbington LE (eds) Chromosome mapping research developments. NOVA Science Publishers, Inc, New York, pp 155–175

    Google Scholar 

  44. Khlestkina EK, Tereshchenko OYU, Salina EA (2009) Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. Mol Genet Genomics 282:475–485

    Article  CAS  Google Scholar 

  45. Khlestkina EK, Pshenichnikova TA, Röder MS, Börner A (2009) Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res Commun 37:391–398

    Article  CAS  Google Scholar 

  46. Khlestkina EK, Salina EA, Pshenichnikova TA, Röder MS, Börner A (2009) Glume coloration in wheat: allelism test, consensus mapping and its association with specific microsatellite alleles. Cereal Res Commun 37:37–43

    Article  CAS  Google Scholar 

  47. Khlestkina EK, Röder MS, Pshenichnikova TA, Börner A (2010) Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.). Mol Breed 25:125–132

    Article  CAS  Google Scholar 

  48. Khlestkina EK, Röder MS, Börner A (2010) Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica 171:65–69

    Article  CAS  Google Scholar 

  49. Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic (Tokyo) 19:13–14

    Google Scholar 

  50. Kihara H (1954) Origin of wheat. Wheat Inf Serv 1:35–42

    Google Scholar 

  51. Kuspira J, Unrau J (1958) Determination of the number and dominance relationships of genes on substituted chromosomes in common wheat Triticum aestivum L. Can J Plant Sci 38:119–205

    Article  Google Scholar 

  52. Lachman J, Dudjak J, Miholová D, Kolihová D, Pivec V (2005) Effect of cadmium on flavonoid content in young barley (Hordeum sativum L.) plants. Plant Soil Environ 51:513–516

    CAS  Google Scholar 

  53. Li HP, Liao YC (2003) Isolation and characterization of two closely linked phenylalanine ammonia-lyase genes from wheat. Yi Chuan Xue Bao 30:907–912

    Article  CAS  Google Scholar 

  54. Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    Article  CAS  Google Scholar 

  55. Liao YC, Li HP, Kreuzaler F, Fischer R (1996) Nucleotide sequence of one of two tandem genes encoding phenylalanine ammonia-lyase in Triticum aestivum. Plant Physiol 112:1398–1398

    Google Scholar 

  56. Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775

    Article  CAS  Google Scholar 

  57. Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci USA 86:7092–7096

    Article  CAS  Google Scholar 

  58. Ma XF, Gustafson JP (2008) Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot (Lond) 101:825–832

    Article  Google Scholar 

  59. Maystrenko OI (1992) The use of cytogenetic methods in ontogenesis study of common wheat. In: Ontogenetics of higher plants. Kishinev, Shtiintsa, pp 98–114

    Google Scholar 

  60. McClintock B (1956) Controlling elements and the gene. Cold Spring Harbor Symp Quant Biol 21:197–216

    CAS  Google Scholar 

  61. McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. http://www.grs.nig.ac.jp/wheat/komugi/genes/

  62. Mehdy MC, Lamb CJ (1987) Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J 6:1527–1533

    CAS  Google Scholar 

  63. Melz G, Thiele V (1990) Chromosome locations of genes controlling ‘purple leaf base’ in rye and wheat. Euphytica 49:155–159

    Article  Google Scholar 

  64. Mendel G (1865) Versuche uber Pflanzen-Hybriden. Verh Naturforsch Ver Brunn 4:3–47

    Google Scholar 

  65. Miyamoto T, Everson EH (1958) Biochemical and physiological studies of wheat seed pigmentation. Agron J 50:733–734

    Article  CAS  Google Scholar 

  66. Miyamoto T, Tolbert NE, Everson EH (1961) Germination inhibitors related to dormancy in wheat seeds. Plant Physiol 36:739–746

    Article  CAS  Google Scholar 

  67. Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217

    Article  Google Scholar 

  68. Morimoto R, Kosugi T, Nakamura C, Takumi S (2005) Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. Plant Mol Biol 57:907–924

    Article  CAS  Google Scholar 

  69. Munkvold JD, Greene RA, Bermudez-Kandianis CE, La Rota CM, Edwards H, Sorrells SF, Dake T, Benscher D, Kantety R, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Miftahudin, Gustafson JP, Pathan MS, Nguyen HT, Matthews DE, Chao S, Lazo GR, Hummel DD, Anderson OD, Anderson JA, Gonzalez-Hernandez JL, Peng JH, Lapitan N, Qi LL, Echalier B, Gill BS, Hossain KG, Kalavacharla V, Kianian SF, Sandhu D, Erayman M, Gill KS, McGuire PE, Qualset CO, Sorrells ME (2004) Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168:639–650

    Article  CAS  Google Scholar 

  70. Nagata T, Todoriki S, Masumizu T, Suda I, Furuta S, Du Z, Kikuchi S (2003) Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J Agric Food Chem 51:2992–2999

    Article  CAS  Google Scholar 

  71. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  Google Scholar 

  72. Nilson-Ehle H (1914) Zur Kenntnis der mit der keimungsphysiologie des weizens in zusammenhang stehenden inneren faktoren. Z Pflanzenzüct 2:153–187

    Google Scholar 

  73. Nilsson-Ehle H (1909) Kreuzungsversuchungen an Hafer und Weizen. Lands Univ Aersskrift NF Afd 2:1–122

    Google Scholar 

  74. Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H (2005) Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci USA 102:16490–16495

    Article  CAS  Google Scholar 

  75. Nozzolillo C, Isabelle P, Andersen OM, Abou-Zaid M (2002) Anthocyanins of jack pine (Pinus banksiana) seedlings. Can J Bot 80:796–801

    Article  CAS  Google Scholar 

  76. Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    Article  CAS  Google Scholar 

  77. Ozkan H, Tuna M, Arumuganathan K (2003) Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Hered 94:260–264

    Article  CAS  Google Scholar 

  78. Panin VM, Netsvetaev VP (1986) Genetic control of gliadins and some morphological characters of spike in durum winter wheats. Nauchno Tekhn Bull USGI Odessa (in Russian) 2:31–36

    Google Scholar 

  79. Parker J (1962) Relationships among cold hardiness, watersoluble protein, anthocyanins, and free sugars in Hederu helix L. Plant Physiol 37:809–813

    Article  CAS  Google Scholar 

  80. Peer WA, Murphy AS (2008) Flavonoids as signal molecules. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 239–268

    Google Scholar 

  81. Pestsova EG, Goncharov NP, Salina EA (1998) Elimination of a tandem repeat of telomeric heterochromatin during the evolution of wheat. Theor Appl Genet 97:1380–1386

    Article  Google Scholar 

  82. Plaza BM, Jimenez S, Segura ML, Contreras JI, Lao MT (2009) Physiological stress caused by salinity in cordyline fruticosa and its indicators. Commun Soil Sci Plant Anal 40:473–484

    Article  CAS  Google Scholar 

  83. Pozolotina VN, Molchanova IV, Karavaeva EN, Mihkaylovskaya LN, Antonova EV, Karimullina EM (2007) Analysis of current state of terrestrial ecosystems in the East-Ural Radioactive Trace. Iss Rad Safety (In Russian) Special Issue ‘The East Ural Radioactive Trace Marks Its 50 Year Anniversary’:32–44

    Google Scholar 

  84. Quattrocchio F, Wing JF, van der Woude K, Mol JN, Koes R (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 13:475–488

    Article  CAS  Google Scholar 

  85. Quattrocchio F, Baudry A, Lepiniec L, Grotewold E (2008) The regulation of flavonoid biosynthesis. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 97–122

    Google Scholar 

  86. Ryan KG, Swinny EE, Markham KR, Winefield C (2002) Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59:23–32

    Article  CAS  Google Scholar 

  87. Salina EA, Numerova OM, Ozkan H, Feldman M (2004) Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat. Genome 47:860–867

    Article  CAS  Google Scholar 

  88. Sasaki K, Takahashi T (2002) A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide. Phytochemistry 61:339–343

    Article  CAS  Google Scholar 

  89. Sears ER (1954) The aneuploids of common wheat. Univ Missouri Agr Sta Res Bull 572:1–59

    Google Scholar 

  90. Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K (2007) Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19:1723–1737

    Article  CAS  Google Scholar 

  91. Singh KB, Malhotra RS, Saxena MC (1995) Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Sci 35:1491–1497

    Article  Google Scholar 

  92. Song KM, Lu P, Tang KL, Osborn TC (1995) Rapid genome changes in synthetic polyploids of Brassica and its implications for polyploidy evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  CAS  Google Scholar 

  93. Suzuki T, Honda Y, Mukasa Y (2005) Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrum tataricum.) leaves. Plant Sci 168:1303–1307

    Article  CAS  Google Scholar 

  94. Tereshchenko OYu, Khlestkina EK, Gordeeva EI, Arbuzova VS, Salina EA (2010) Biosynthesis of flavonoids under salinity stress in Triticum aestivum L. In: Abstract of international conference “plant genetics, genomics, biotechnology”, Novosibirsk, Russia, 7–10 June, p 84

    Google Scholar 

  95. Wang C, Shu Q (2007) Fine Mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.). Chinese Sci Bull 52:3097–3104

    Article  CAS  Google Scholar 

  96. Winkel BSJ (2008) The biosynthesis of flavonoids. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 71–96

    Google Scholar 

  97. Yang G, Li B, Gao J, Liu J, Zhao X, Zheng Q, Tong Y, Li Z (2004) Cloning and expression of two chalcone synthase and a flavonoid 3′5′-Hydroxylase 3′-end cDNAs from developing seeds of blue-grained wheat involved in anthocyanin biosynthetic pathway. J Integr Plant Biol (Acta Bot Sin) 46:588–594

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena K. Khlestkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Khlestkina, E.K., Tereshchenko, O., Salina, E. (2012). Flavonoid Biosynthesis Genes in Wheat and Wheat-Alien Hybrids: Studies into Gene Regulation in Plants with Complex Genomes. In: Mothersill, C., Korogodina, V., Seymour, C. (eds) Radiobiology and Environmental Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1939-2_4

Download citation

Publish with us

Policies and ethics