Skip to main content

Reduced Rb1 Expression Causes Impaired Genome Stability in Bone-Cells and Predispose for Radiation-Induced Osteosarcoma

  • Conference paper
  • First Online:
Radiobiology and Environmental Security

Abstract

The risk of cancer after exposure to ionizing radiation is currently defined only as a function of the received dose. Genetic factors that modify individual susceptibility to radiation-induced cancer are excluded from the risk assessment. We report the mapping of QTLs that confer increased susceptibility to radiation-induced osteosarcoma in the mouse. The strongest candidate locus, on chromosome 14, contains a functional polymorphism weakening the efficiency of the Rb1 promoter. The Rb1 allele associated with increased susceptibility is preferentially retained during allelic loss at the Rb1 gene in radiation-induced tumors. In combination with allelic losses of CDKN2a/P16, an upstream regulator of Rb1, 100% of all analyzed tumors exhibit a defect affecting this pathway. Alpha-irradiation of knockout mice with a bone-specific expression reduction of Rb1 or P16 confirmes that these genes can alter the susceptibility for osteosarcoma, either by increasing the tumor-risk or by shortening their latency. These results suggest that common germ-line polymorphisms causing impaired expression of known tumor-suppressor genes can modify individual susceptibility to radiation-induced cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brugarolas J, Moberg K, Boyd SD, Taya Y, Jacks T, Lees JA (1999) Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after gamma-irradiation. Proc Natl Acad Sci USA 96:1002–1007

    Article  CAS  Google Scholar 

  2. Cox R (1994) Molecular mechanisms of radiation oncogenesis. Int J Radiat Biol 65:57–64

    Article  CAS  Google Scholar 

  3. Draper GJ, Sanders BM, Kingston JE (1986) Second primary neoplasms in patients with retinoblastoma. Br J Cancer 53:661–671

    Article  CAS  Google Scholar 

  4. Eng C, Li FP, Abramson DH, Ellsworth RM, Wong FL, Goldman MB, Seddon J, Tarbell N, Boice JD Jr (1993) Mortality from second tumors among long-term survivors of retinoblastoma. J Natl Cancer Inst 85:1121–1128

    Article  CAS  Google Scholar 

  5. Ensembl mouse genome sequence (2010) http://www.ensembl.org/Mus_musculus/

  6. Fry SA (1986) Studies of U.S. radium dial workers: an epidemiological classic. Radiat Res 150(Suppl):S21–S29

    Google Scholar 

  7. Gilman PA, Wang N, Fan SF, Reede J, Khan A, Leventhal BG (1986) Familial osteosarcoma associated with 13;14 chromosomal rearrangement. Cancer Genet Cytogenet 17:123–132

    Article  Google Scholar 

  8. Gonzalez Vasconcellos I, Domke T, Kuosaite V, Esposito I, Sanli-Bonazzi B, Nathrath M, Atkinson MJ, Rosemann M (2011) Differential effects of genes of the Rb1-signaling pathway on osteosarcoma incidence and latency in alpha-particle irradiated mice. Radiat Environ Biophys 50(1):135–141

    Article  CAS  Google Scholar 

  9. Groch KM, Khan MA, Brooks AL, Saffer JD (1997) Lung cancer response following inhaled radon in the A/J and C57BL/6J mouse. Int J Radiat Biol 71:301–308

    Article  CAS  Google Scholar 

  10. Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A (1998) Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4:619–622

    Article  CAS  Google Scholar 

  11. Hansen MF, Koufos A, Gallie BL, Phillips RA, Fodstad O, Brøgger A, Gedde-Dahl T, Cavanee WK (1985) Osteosarcomas and retinoblastomas: a shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci USA 82:6216–6220

    Article  CAS  Google Scholar 

  12. Hemminki K, Mutanen P (2001) Genetic epidemiology of multistage carcinogenesis. Mutat Res 473:11–21

    Article  CAS  Google Scholar 

  13. Luz A, Müller WA, Linzner U, Strauss PG, Schmidt J, Müller K, Atkinson MJ, Murray AB, Gossner W, Erfle V, Hofler H (1991) Bone tumor induction after incorporation of short-lived radionuclides. Radiat Environ Biophys 30:225–227

    Article  CAS  Google Scholar 

  14. Meisner LF, Gilbert E, Ris HW, Haverty G (1979) Genetic mechanisms in cancer predisposition: report of a cancer family. Cancer 43:679–689

    Article  CAS  Google Scholar 

  15. Ponder BA (1990) Inherited predisposition to cancer. Trends Genet 6:213–228

    Article  CAS  Google Scholar 

  16. Rosemann M, Lintrop M, Favor J, Atkinson MJ (2002) Bone tumorigenesis induced by alpha-particle radiation: mapping of genetic loci influencing predisposition in mice. Radiat Res 157:426–434

    Article  CAS  Google Scholar 

  17. Rosemann M, Kuosaite V, Kremer M, Favor J, Quintanilla-Martinez L, Atkinson MJ (2006) Multilocus inheritance determines predisposition to alpha-radiation induced bone tumourigenesis in mice. Int J Cancer 118:2132–2138

    Article  CAS  Google Scholar 

  18. Santos J, Herranz M, Perez DCI, Pellicer A, Fernandez-Piqueras J (1998) A new candidate site for a tumor suppressor gene involved in mouse thymic lymphomagenesis is located on the distal part of chromosome 4. Oncogene 17:925–929

    Article  CAS  Google Scholar 

  19. UNSCEAR (2000) Sources and effects of ionizing radiation, annex I. United Nations Publications, New York, pp 298–450

    Google Scholar 

  20. Zacksenhaus E, Bremner R, Jiang Z, Gill RM, Muncaster M, Sopta M, Phillips RA, Gallie BL (1993) Unraveling the function of the retinoblastoma gene. Adv Cancer Res 61:115–141

    Article  CAS  Google Scholar 

  21. Zhang S, Qian X, Redman C, Bliskovski V, Ramsay ES, Lowy DR, Mock BA (2003) p16 INK4a gene promoter variation and differential binding of a repressor, the ras-responsive zinc-finger transcription factor, RREB. Oncogene 22:2285–2295

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grants from the European Commission (EURATOM) FIGH-CT99- 00001 and from the German ministry BMBF (KVSF 03NUK007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rosemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Rosemann, M., González-Vasconcellos, I., Domke, T., Nathrath, M., Atkinson, M.J. (2012). Reduced Rb1 Expression Causes Impaired Genome Stability in Bone-Cells and Predispose for Radiation-Induced Osteosarcoma. In: Mothersill, C., Korogodina, V., Seymour, C. (eds) Radiobiology and Environmental Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1939-2_29

Download citation

Publish with us

Policies and ethics