Skip to main content

Effects of Chronic Irradiation in Plant Populations

  • Conference paper
  • First Online:
Radiobiology and Environmental Security

Abstract

An assessment of the state of plant and animal populations inhabiting polluted territories and the analysis of mechanisms of their adaptation to adverse environmental conditions undoubtedly have general biological importance. Consequently, studies that examine biological effects on non-human biota in natural settings provide a unique opportunity for obtaining information about the potential biological hazard associated with radioactive contamination. The results of long-term field studies in the Bryansk region of Russia affected by the Chernobyl accident and in the Semipalatinsk Test Site, Kazakhstan are presented. Although radionuclides cause primary damage at the molecular level, there are emergent effects at the level of populations, non-predictable solely from knowledge of elementary mechanisms of the pollutants’ influence. Plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic disturbances and genetic diversity. Radioactive contamination of the plant environment activates biological mechanisms, changing a population’s resistance to exposure. However, there are radioecological situations where enhanced radioresistance has not evolved or has not persisted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boubriak II, Grodzinsky DM, Polischuk VP, Naumenko VD, Gushcha NP, Micheev AN, McCready SJ, Osborne DJ (2008) Adaptation and impairment of DNA repair function in pollen of Betula verrucosa and seeds of Oenothera biennis from differently radionuclide-contaminated sites of Chernobyl. Ann Bot 101:267–276

    Article  CAS  Google Scholar 

  2. Bradshaw AD (1991) Genostasis and the limits to evolution. Phil Trans R Soc Lond B 333:289–305

    Article  CAS  Google Scholar 

  3. Fedotov IS, Kalchenko VA, Igonina EV, Rubanovich AV (2006) Radiation and genetic consequences of ionizing irradiation on population of Pinus sylvestris L. within the zone of the Chernobyl NPP. Radiat Biol Radioecol 46:268–278, in Russian

    CAS  Google Scholar 

  4. Futuyma DJ (2010) Evolutionary constraint and ecological consequences. Evolution 64:1865–1884

    Article  Google Scholar 

  5. Galbraith H, LeJeune K, Lipton J (1995) Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in Southwest Montana uplands contaminated by smelter emissions: I. Field evaluation. Environ Toxicol Chem 11:1895–1903

    Article  Google Scholar 

  6. Garnier-Laplace J, Della-Vedova C, Andersson P, Copplestone D, Cailes C, Beresford NA, Howard BJ, Howe P, Whitehouse P (2010) A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances. J Radiol Prot 30:215–233

    Article  CAS  Google Scholar 

  7. Geras’kin SA, Zimina LM, Dikarev VG, Dikareva NS, Zimin VL, Vasiliyev DV, Oudalova AA, Blinova LD, Alexakhin RM (2003) Bioindication of the anthropogenic effects on micropopulations of Pinus sylvestris L. in the vicinity of a plant for the storage and processing of radioactive waste and in the Chernobyl NPP zone. J Environ Radioact 66:171–180

    Article  Google Scholar 

  8. Geras’kin SA, Dikarev VG, Zyablitskaya YY, Oudalova AA, Spirin YV, Alexakhin RM (2003) Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops. J Environ Radioact 66:155–169

    Article  Google Scholar 

  9. Geras’kin SA, Kim JK, Oudalova AA, Vasiliyev DV, Dikareva NS, Zimin VL, Dikarev VG (2005) Bio-monitoring the genotoxicity of populations of Scots pine in the vicinity of a radioactive waste storage facility. Mutat Res 583:55–66

    Google Scholar 

  10. Geras’kin SA, Mozolin EM, Dikarev VG, Oudalova AA, Dikareva NS, Spiridonov SI, Tetenkin VL (2009) Cytogenetic effects in Koeleria gracilis Pers. populations from the Semipalatinsk Test Site (Kazakhstan). Radiat Biol Radioecol 49:147–157, in Russian

    Google Scholar 

  11. Geras’kin SA, Vanina JC, Dikarev VG, Novikova TA, Oudalova AA, Spiridonov SI (2010) Genetic variability in Scotch pine populations of the Bryansk Region radioactively contaminated in the Chernobyl accident. Biophysics 55:324–331

    Article  Google Scholar 

  12. Geras’kin SA, Oudalova AA, Dikareva NS, Spiridonov SI, Hinton T, Chernonog EV, Garnier-Laplace J (2011) Long-term observations on Scots pine populations affected by the Chernobyl accident. Ecotoxicology 20:1195–1208

    Google Scholar 

  13. Gonzalez-Martinez SC, Krutovsky KV, Neale DB (2006) Forest-tree population genomics and adaptive evolution. New Phytol 170:227–238

    Article  Google Scholar 

  14. Grimes RW, Nuttall WJ (2010) Generating the option of a two-stage nuclear renaissance. Science 329:799–803

    Article  CAS  Google Scholar 

  15. Hickey DA, McNeilly T (1975) Competition between metal tolerant and normal plant populations; a field experiment on normal soil. Evolution 29:458–464

    Article  Google Scholar 

  16. Hoffmann AA, Hercus MJ (2000) Environmental stress as an evolutionary force. Bioscience 50:217–226

    Article  Google Scholar 

  17. IAEA (1992) Effects of ionizing radiation on plants and animals at levels implied by current radiation protection standards, Technical reports series N 332. International Atomic Energy Agency, Vienna

    Google Scholar 

  18. Ipatyev V, Bulavik I, Braginsky V, Goncharenko G, Dvornik A (1999) Forest and Chernobyl: forest ecosystems after the Chernobyl nuclear power plant accident: 1986–1994. J Environ Radioact 42:9–38

    Article  CAS  Google Scholar 

  19. Kalchenko VA, Fedotov IS (2001) Genetic effects of acute and chronic ionizing radiation on Pinus sylvestris L. inhabiting the Chernobyl meltdown area. Russ J Genet 37:427–447

    Google Scholar 

  20. Kalchenko VA, Spirin DA (1989) Genetic effects revealed in populations of Pinus sylvestris L. growing under exposure to small doses of chronic irradiation. Russ J Genet 25:1059–1064

    CAS  Google Scholar 

  21. Kovalchuk I, Abramov V, Pogribny I, Kovalchuk O (2004) Molecular aspects of plant adaptation to life in the Chernobyl zone. Plant Physiol 135:357–363

    Article  CAS  Google Scholar 

  22. Kozlov MV, Zvereva EL (2007) Industrial barrens: extreme habitats created by non-ferrous metallurgy. Rev Environ Sci Biotechnol 6:231–259

    Article  CAS  Google Scholar 

  23. Kozlowski TT (2000) Responses of woody plants to human-induced environmental stresses: issues, problems, and strategies for alleviating stress. Crit Rev Plant Sci 19:91–170

    Article  Google Scholar 

  24. Macnair M (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559

    Article  CAS  Google Scholar 

  25. Mankovska B, Seinnes E (1995) Effects of pollutants from an aluminum reduction plant on forest ecosystems. Sci Total Environ 163:11–23

    Article  CAS  Google Scholar 

  26. Orr HA, Unckless RL (2008) Population extinction and the genetics of adaptation. Am Nat 172:160–169

    Article  Google Scholar 

  27. Peterson CH, Rice CD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086

    Article  CAS  Google Scholar 

  28. Pitelka LF (1988) Evolutionary responses of plants to anthropogenic pollutants. Trends Evol Ecol 3:233–236

    Article  CAS  Google Scholar 

  29. Prus-Glowacki W, Wojnjcka-Poltorak A, Oleksyn J, Reich PB (1999) Industrial pollutants tend to increase genetic diversity: evidence from field-grown European Scots pine. Water Air Soil Pollut 116:395–402

    Article  CAS  Google Scholar 

  30. Real A, Sundell-Bergman S, Knowles JF, Woodhead D, Zinger I (2004) Effects of ionizing radiation exposure on plants, fish and mammals: relevant data for environmental protection. J Radiol Prot 24:A123–A137

    Article  CAS  Google Scholar 

  31. Scock AV, Glasoun IN, Samoshkin EN (2005) Influence of radioactive contamination on pollen viability and anomaly in Scots pine from Bryansk region. Forest J 5:7–11

    Google Scholar 

  32. Shevchenko VA, Pechkurenkov VL, Abramov VI (1992) Radiation genetics of natural populations: genetic consequences of the Kyshtym accident. Nauka Publishers, Moscow, 221 p, in Russian

    Google Scholar 

  33. Syomov AB, Ptitsyna SN, Sergeeva SA (1992) Analysis of DNA strand break induction and repair in plants from the vicinity of Chernobyl. Sci Total Environ 112:1–8

    Article  CAS  Google Scholar 

  34. Theodorakis CW (2001) Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment. Ecotoxicology 10:245–256

    Article  CAS  Google Scholar 

  35. Valladares F, Gianoli E, Gomez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763

    Article  Google Scholar 

  36. Walbot V (1985) On the life strategies of plants and animals. Trends Genet 1:165–170

    Article  Google Scholar 

  37. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lansdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  CAS  Google Scholar 

  38. Zhivotovsky L (1980) An index of intrapopulation diversity. J Gen Biol 41:828–836 (in Russian)

    Google Scholar 

Download references

Acknowledgements

Works presented were supported by Russian Foundation for Basic Research (grant 08-04-00631) and ISTC projects № 3003 and K-1328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Geras’kin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Geras’kin, S. et al. (2012). Effects of Chronic Irradiation in Plant Populations. In: Mothersill, C., Korogodina, V., Seymour, C. (eds) Radiobiology and Environmental Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1939-2_28

Download citation

Publish with us

Policies and ethics