Skip to main content

Low Dose Responses of Bone Marrow to X-Rays In Vivo

  • Conference paper
  • First Online:
Radiobiology and Environmental Security

Abstract

Radiation risk at low doses is determined by linear extrapolation from high dose epidemiological data. In the last decade many non-targeted effects have been reported which may be relevant to low dose risk determination. To investigate cell responses at such low doses we used bone marrow cells of mice. We have not observed non-targeted effects long- or short-term post irradiation. Exposure below 50–100 mGy provides no evidence of a dose response for apoptotic signaling, bystander effects and low responses for p53 and p21 induction with significant individual variability. There is also no evidence for long-term chromosomal instability in the bone marrow at doses below 1 Gy. The data also demonstrate unexpected thresholds above which dose-dependent damage signaling is observed and the chromosomal instability phenotype is induced. The data are consistent with low dose X-irradiation being less damaging than would be expected from the LNT paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barcellos-Hoff MH, Brooks AL (2001) Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability. Radiat Res 156(5 Pt 2):618–627

    Article  CAS  Google Scholar 

  2. Brenner DJ et al (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 100(24):13761–13766

    Article  CAS  Google Scholar 

  3. Brooks AL (2004) Evidence for ‘bystander effects’ in vivo. (Trans from Eng) Hum Exp Toxicol 23(2):67–70 (In Eng)

    Google Scholar 

  4. Camphausen K et al (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993

    CAS  Google Scholar 

  5. Coates PJ, Robinson JI, Lorimore SA, Wright EG (2008) Ongoing activation of p53 pathway responses is a long-term consequence of radiation exposure in vivo and associates with altered macrophage activities. J Pathol 214(5):610–616

    Article  CAS  Google Scholar 

  6. Emerit I (1990) Superoxide production by clastogenic factors. In: Crastes de Paulet A (ed.) Free radicals, lipoproteins and membrane lipids. Plenum Press, New York, pp 99–104

    Google Scholar 

  7. Emerit I (1994) Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Radic Biol Med 16(1):99–109

    Article  CAS  Google Scholar 

  8. Emerit I, Khan SH, Esterbauer H (1991) Hydroxynonenal a component of clastogenic factors? Free Radic Biol Med 10(6):371–377

    Article  CAS  Google Scholar 

  9. Emerit I et al (1995) Transferable clastogenic activity in plasma from patients with Fanconi anemia. Hum Genet 96(1):14–20

    Article  CAS  Google Scholar 

  10. Emerit I et al (1997) Clastogenic activity in the plasma of scleroderma patients: a biomarker of oxidative stress. (Trans from Eng) Dermatology 194(2):140–146 (In Eng)

    Google Scholar 

  11. Goodhead DT (1989) The initial physical damage produced by ionizing radiations. Int J Radiat Biol 56(5):623–634

    Article  CAS  Google Scholar 

  12. Goodhead DT (1994) Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 65(1):7–17

    Article  CAS  Google Scholar 

  13. Gowans ID, Lorimore SA, McIlrath JM, Wright EG (2005) Genotype dependent induction of transmissible chromosomal instability by gamma radiation and the benzene metabolite hydroquinone. Cancer Res 65(9):3527–3530

    Article  CAS  Google Scholar 

  14. Hall EJ (2003) The bystander effect. Health Phys 85(1):31–35

    Article  CAS  Google Scholar 

  15. Hayashi T et al (2003) Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors. Int J Radiat Biol 79(2):129–136

    CAS  Google Scholar 

  16. Hei TK et al (2008) Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol 60(8):943–950

    Article  CAS  Google Scholar 

  17. Kaminski JM et al (2005) The controversial abscopal effect. Cancer Treat Rev 31(3):159–172

    Article  CAS  Google Scholar 

  18. Khan MA, Hill RP, Van Dyk J (1998) Partial volume rat lung irradiation: an evaluation of early DNA damage. Int J Radiat Oncol Biol Phys 40(2):467–476

    Article  CAS  Google Scholar 

  19. Khan MA, Van Dyk J, Yeung IW, Hill RP (2003) Partial volume rat lung irradiation; assessment of early DNA damage in different lung regions and effect of radical scavengers. Radiother Oncol 66(1):95–102

    Article  Google Scholar 

  20. Koturbash I et al (2008) In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased p53 levels in shielded spleen. Int J Radiat Oncol Biol Phys 70(2):554–562

    Article  CAS  Google Scholar 

  21. Lorimore SA et al (1998) Chromosomal instability in the descendants of unirradiated surviving cells after alpha-particle irradiation. Proc Natl Acad Sci USA 95(10):5730–5733

    Article  CAS  Google Scholar 

  22. Lorimore SA, Coates PJ, Wright EG (2003) Radiation-induced genomic instability and bystander effects: inter-related nontargeted effects of exposure to ionizing radiation. Oncogene 22(45):7058–7069

    Article  CAS  Google Scholar 

  23. Lorimore SA, McIlrath JM, Coates PJ, Wright EG (2005) Chromosomal instability in unirradiated hemopoietic cells resulting from a delayed in vivo bystander effect of gamma radiation. Cancer Res 65(13):5668–5673

    Article  CAS  Google Scholar 

  24. Lorimore SA, Chrystal JA, Robinson JI, Coates PJ, Wright EG (2008) Chromosomal instability in unirradiated hemaopoietic cells induced by macrophages exposed in vivo to ionizing radiation. Cancer Res 68(19):8122–8126

    Article  CAS  Google Scholar 

  25. Mancuso M et al (2008) Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci USA 105(34):12445–12450

    Article  CAS  Google Scholar 

  26. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    Article  CAS  Google Scholar 

  27. Mole RH (1953) Whole body irradiation; radiobiology or medicine? Br J Radiol 26(305):234–241

    Article  CAS  Google Scholar 

  28. Morgan WF (2003) Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 159(5):581–596

    Article  CAS  Google Scholar 

  29. Morgan WF, Sowa MB (2007) Non-targeted bystander effects induced by ionizing radiation. Mutat Res 616(1–2):159–164

    CAS  Google Scholar 

  30. Mothersill C, Seymour C (2001) Radiation-induced bystander effects: past history and future directions. Radiat Res 155(6):759–767

    Article  CAS  Google Scholar 

  31. Mothersill C, Seymour C (2003) Radiation-induced bystander effects, carcinogenesis and models. Oncogene 22(45):7028–7033

    Article  CAS  Google Scholar 

  32. Mothersill C, Seymour CB (2006) Radiation-induced bystander effects and the DNA paradigm: an “out of field” perspective. Mutat Res 597(1–2):5–10

    CAS  Google Scholar 

  33. Mothersill C et al (2005) Genetic factors influencing bystander signaling in murine bladder epithelium after low-dose irradiation in vivo. Radiat Res 163(4):391–399

    Article  CAS  Google Scholar 

  34. Neriishi K, Nakashima E, Delongchamp RR (2001) Persistent subclinical inflammation among A-bomb survivors. Int J Radiat Biol 77(4):475–482

    Article  CAS  Google Scholar 

  35. Ohba K et al (1998) Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43(4):575–577

    Article  CAS  Google Scholar 

  36. Prise KM, Folkard M, Michael BD (2003) Bystander responses induced by low LET radiation. Oncogene 22(45):7043–7049

    Article  CAS  Google Scholar 

  37. Rithidech KN, Cronkite EP, Bond VP (1999) Advantages of the CBA mouse in leukemogenesis research. Blood Cells Mol Dis 25(1):38–45

    Article  CAS  Google Scholar 

  38. Watson GE, Lorimore SA, Wright EG (1996) Long-term in vivo transmission of alpha-particle-induced chromosomal instability in murine haemopoietic cells. Int J Radiat Biol 69(2):175–182

    Article  CAS  Google Scholar 

  39. Watson GE, Pocock DA, Papworth D, Lorimore SA, Wright EG (2001) In vivo chromosomal instability and transmissible aberrations in the progeny of haemopoietic stem cells induced by high- and low-LET radiations. Int J Radiat Biol 77(4):409–417

    Article  CAS  Google Scholar 

  40. Wright EG, Coates PJ (2006) Untargeted effects of ionizing radiation: implications for radiation pathology. Mutat Res 597(1–2):119–132

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NOTE IP 036465 (FI6R), Euratom specific programme for research and training on nuclear energy, 6th FP of the EC and by a specialist programme 07003 of Leukaemia and Lymphoma Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay A. Zyuzikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Zyuzikov, N.A., Coates, P.J., Lorimore, S.A., Wright, E.G. (2012). Low Dose Responses of Bone Marrow to X-Rays In Vivo. In: Mothersill, C., Korogodina, V., Seymour, C. (eds) Radiobiology and Environmental Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1939-2_13

Download citation

Publish with us

Policies and ethics