Skip to main content

Secondary Metabolites and Plant Defence

  • Chapter
  • First Online:

Part of the book series: Progress in Biological Control ((PIBC,volume 12))

Abstract

Infected or elicited plants accumulate an array of plant defensive compounds. Now-a-days, it is well accepted that plant SECONDARY METABOLITES are involved in this plant defence system. The process of inducing resistance using elicitors is environmental friendly and is advantageous over the chemical based pesticides. It is like stimulation of the plant’s own “immune” potential rather than on suppression of pathogens. The resistance developed in this way has prolonged effect. This strategy could be an alternative solution to reduce the use of pesticides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dearing MD, Foley WJ, McLean S (2005) The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu Rev Ecol Evol Syst 36:169–189

    Google Scholar 

  2. Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    CAS  Google Scholar 

  3. Dussourd DE, Denno RF (1991) Deactivation of plant defense: correspondence between insect behavior and secretory canal architecture. Ecology 72:1383–1396

    Google Scholar 

  4. Becerra JX (1994) Squirt-gun defense in Bursera and the chrysomelid counterploy. Ecology 75:1991–1996

    Google Scholar 

  5. Phillips MA, Rodney B (1999) Croteau Resin-based defenses in conifers. Trends Plant Sci 4:184–190

    PubMed  Google Scholar 

  6. Evans PH, Becerra JX, Venable DL, Bowers WS (2000) Chemical analysis of squirt-gun defense in Bursera and counter defense by chrysomelid beetles. J Chem Ecol 26:745–754

    CAS  Google Scholar 

  7. Becerra JX, Venable DL, Evans PH, Bowers WS (2001) Interactions between chemical and mechanical defenses in the plant genus Bursera and their implications for herbivores. Am Zool 41:865–876

    CAS  Google Scholar 

  8. Ramanujan K (Winter 2008) Discoveries: milkweed evolves to shrug off predation. North Woodl (Center for Northern Woodlands Education) 15:56

    Google Scholar 

  9. Field B, Jordán F, Osbourn A (2006) First encounters – deployment of defence-related natural products by plants. New Phytol 172:193–207

    PubMed  CAS  Google Scholar 

  10. Kombrink E, Schmelzer E (2001) The hypersensitive response and its role in local and systemic disease resistance. Eur J Plant Pathol 107:69–78

    Google Scholar 

  11. Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    PubMed  CAS  Google Scholar 

  12. Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci USA 106:18054–18061

    PubMed  CAS  Google Scholar 

  13. Wink M (2008) Evolution of secondary plant metabolism. In: Encyclopedia of life sciences (ELS). Wiley, Chichester

    Google Scholar 

  14. Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat KG (ed.) Herbal drugs: ethnobotanical to modern perspective. Springer, Heidelberg

    Google Scholar 

  15. Wink M, Schimmer O (2010) Molecular modes of action of defensive secondary metabolites. In: Wink M (ed.) Functions and biotechnology of plant secondary metabolites, vol 39, II edn, Annual plant reviews. Wiley Blackwell, Chichester

    Google Scholar 

  16. Dixon RA (2001) Natural products and disease resistance. Nature 411:843–847

    PubMed  CAS  Google Scholar 

  17. Lanea AL, Nyadonga L, Galhenaa AS, Shearerb TL, Stouta EP, Parryc RM, Kwasnika M, Wangc MD, Hayb ME, Fernandeza FM, Kubanek J (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Natl Acad Sci USA 106:7314–7319

    Google Scholar 

  18. Hamm G, Carré V, Poutaraud A, Maunit B, Frache G, Merdinoglu D, Muller J-F (2010) Determination and imaging of metabolites from Vitis vinifera leaves by laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 24:335–342

    PubMed  CAS  Google Scholar 

  19. Strack D (1997) Phenolic metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, New York

    Google Scholar 

  20. Ali K, Maltese F, Choi YH, Verpoorte R (2010) Metabolic constituents of grapevine and grape-derived. Prod Phytochem Rev 9:357–378

    CAS  Google Scholar 

  21. Jaganath IB, Crozier A (2010) Dietary flavonoids and phenolic compounds. In: Fraga CG (ed.) Plant phenolics and human health: biochemistry, nutrition, and pharmacology. Wiley, Hoboken

    Google Scholar 

  22. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    PubMed  CAS  Google Scholar 

  23. Koskimaki JJ, Hokkanen J, Jaakola L, Suorsa M, Tolonen A, Sampo M, Pirttila AM, Hohtola A (2009) Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress. Eur J Plant Pathol 125:629–640

    Google Scholar 

  24. Skadhauge B, Thomsen K, von Wettstein D (1997) The role of barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126:147–160

    CAS  Google Scholar 

  25. Mallikarjuna N, Kranthi KR, Jadhav DR, Kranthi S, Chandra S (2004) Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. J Appl Entomol 128:321–328

    CAS  Google Scholar 

  26. Collingborn FMB, Gowen SR, Mueller-Harvey I (2000) Investigations into the biochemical basis of nematode resistance in roots of three Musa cultivars in response to Radopholus similis infection. J Agric Food Chem 48:5297–5301

    PubMed  CAS  Google Scholar 

  27. Lattanzio V (2003) Bioactive polyphenols: their role in quality and storability of fruit and vegetables. J Appl Bot 77:128–146

    CAS  Google Scholar 

  28. Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defence: a genomics perspective. Mol Plant Pathol 3:371–390

    PubMed  CAS  Google Scholar 

  29. Stevanovic T, Diouf PN, Garcia-Perez ME (2009) Bioactive polyphenols from healthy diets and forest biomass. Curr Nutr Food Sci 5:264–295

    CAS  Google Scholar 

  30. Du H, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86:1293–1312

    PubMed  CAS  Google Scholar 

  31. Veitch NC (2007) Isoflavonoids of the Leguminosae. Nat Prod Rep 24:417–464

    PubMed  CAS  Google Scholar 

  32. Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763

    PubMed  CAS  Google Scholar 

  33. Dixon RA, Ferreira D (2002) Molecules of interest, genistein. Phytochemistry 60:205–211

    PubMed  CAS  Google Scholar 

  34. Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ, Dixon RA (2007) Inaugural article, different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci USA 104:17909–17915

    PubMed  CAS  Google Scholar 

  35. Russell GB, Sutherland ORW, Hutchins RFN, Christmas PE (1978) Vestitol: a phytoalexin with insect feeding-deterrent activity. J Chem Ecol 4:571–579

    CAS  Google Scholar 

  36. Latunde-Dadaa AO, Lucasa JA (1985) Involvement of the phytoalexin medicarpin in the differential response of callus lines of lucerne (Medicago sativa) to infection by Verticillium albo-atrum. Physiol Plant Pathol 26:31–42

    Google Scholar 

  37. Rivera-Vargasa LI, Schmitthennera AF, Graham TL (1993) Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry 32:851–857

    Google Scholar 

  38. Kramer RP, Hindorf H, Jha HC, Kallage J, Zilliken F (1984) Antifungal activity of soybean and chickpea isoflavones and their reduced derivatives. Phytochemistry 23:2203–2205

    Google Scholar 

  39. Weidenborner M, Hindorf H, Jha HC, Tsotsonos P, Egge H (1990) Antifungal activity of isoflavonoids in different reduced stages on Rhizoctonia solani and Sclerotium rolfsii. Phytochemistry 29:801–803

    Google Scholar 

  40. Rahman MM, Gray AI, Khondkar P, Sarker SD (2008) Antibacterial and antifungal activities of the constituents of Flemingia paniculata. Pharm Biol 46:356–359

    CAS  Google Scholar 

  41. Madani S, Singh GN, Kohli K, Ali M, Kumar Y, Singh RM, Prakash O (2009) Isoflavonoids from flemingia strobilifera (L) R. Br. roots. Acta Pol Pharm Drug Res 66:297–303

    Google Scholar 

  42. Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magné C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091

    PubMed  CAS  Google Scholar 

  43. Yiğit D, Yiğit N, Mavi A (2009) Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz J Med Biol Res 42:346–352

    PubMed  Google Scholar 

  44. Gupta VK, Fatima A, Faridi U, Negi AS, Shanker K et al (2008) Antimicrobial potential of Glycyrrhiza glabra roots. J Ethnopharmacol 116:377–380

    PubMed  Google Scholar 

  45. Kim HJ, Suh HJ, Lee CH et al (2010) Antifungal activity of glyceollins isolated from soybean elicited with Aspergillus sojae. J Agric Food Chem 58:9483–9487

    PubMed  CAS  Google Scholar 

  46. Cheng J, Yuan C, Graham TL (2011) Potential defense-related prenylated isoflavones in lactofen-induced soybean. Phytochemistry 72:875–881

    Google Scholar 

  47. Aslam SN, Stevenson PC, Kokubun T, Hall DR (2009) Antibacterial and antifungal activity of cicerfuran and related 2-arylbenzofurans and stilbenes. Microbiol Res 164:191–195

    PubMed  CAS  Google Scholar 

  48. Shen T, Wang XN, Lou HX (2009) Natural stilbenes: an overview. Nat Prod Rep 26:916–935

    PubMed  CAS  Google Scholar 

  49. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155

    CAS  Google Scholar 

  50. Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    PubMed  CAS  Google Scholar 

  51. Richter H, Pezet R, Viret O, Gindro K (2005) Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. Physiol Mol Plant Pathol 67:248–260

    CAS  Google Scholar 

  52. Schnee S, Viret O, Gindro K (2008) Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant Pathol 72:128–133

    CAS  Google Scholar 

  53. Adrian M, Daire X, Jeandet P, Breuil AC, Weston LA, Bessis R, Boudon E (1997) Comparisons of stilbene synthase activity (resveratrol amounts and stilbenes synthase mRNAs levels) in grapevines treated with biotic and abiotic phytoalexin inducers. Am J Enol Viticult 48:394–395

    Google Scholar 

  54. Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9:77–86

    CAS  Google Scholar 

  55. Langcake P, McCarthy WV (1979) The relationship of resveratrol production to infection of grapevine leaves by Botrytis cinerea. Vitis 18:244–253

    CAS  Google Scholar 

  56. Bezier A, Lambert B, Baillieul F (2002) Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur J Plant Pathol 108:111–120

    CAS  Google Scholar 

  57. Morales M, Barcelo A, Ros PMA (2000) Plant stilbenes: recent advances in their chemistry and biology. Adv Plant Physiol 3:39–70

    Google Scholar 

  58. Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    PubMed  CAS  Google Scholar 

  59. Schultz TP, Boldin WD, Fisher TH, Nicholas DD, McMurtrey KD, Pobanz K (1992) Structure-fungicidal properties of some 3- and 4-hydroxylated stilbenes and bibenzyl analogues. Phytochemistry 31:3801–3806

    CAS  Google Scholar 

  60. Schulze K, Schreiber L, Szankowski I (2005) Inhibiting effects of resveratrol and its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. J Agric Food Chem 53:356–362

    PubMed  CAS  Google Scholar 

  61. Poutaraud A, Latouche G, Martins S, Meyer S, Merdinoglu D, Cerovic ZG (2007) Fast and local assessment of stilbene content in grapevine leaf by in vivo fluorometry. J Agric Food Chem 55:4913–4920

    PubMed  CAS  Google Scholar 

  62. Pezet R, Gindro K, Viret O, Spring J-L (2004) Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol Mol Plant Pathol 65:297–303

    CAS  Google Scholar 

  63. Coutos-Thevenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    PubMed  CAS  Google Scholar 

  64. Serazetdinova L, Oldach KH, Lörz H (2005) Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J Plant Physiol 162:985–1002

    PubMed  CAS  Google Scholar 

  65. Hain R, Reif HJ, Krause E, Langebartels R, Kindle H, Vorman B, Schmelzer E, Schreier P, Stocker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    PubMed  CAS  Google Scholar 

  66. Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    CAS  Google Scholar 

  67. Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 13:551–562

    PubMed  CAS  Google Scholar 

  68. Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa ) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    CAS  Google Scholar 

  69. Giorcelli A, Sparvoli F, Mattivi F, Tava A, Balestrazzi A, Vrhovsek U, Calligari P, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res 13:203–214

    PubMed  CAS  Google Scholar 

  70. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    PubMed  CAS  Google Scholar 

  71. Roupe KA, Remsberg CM, Yαρez JA, Davies NM (2006) Pharmacometrics of stilbenes: seguing towards the clinic. Curr Clin Pharmacol 1:81–101

    PubMed  CAS  Google Scholar 

  72. Morrissey JP (2009) Biological activity of defence-related plant secondary metabolites. In: Osbourn AE, Lanzotti V (eds.) Plant derived natural products synthesis, function, and application. Springer, London

    Google Scholar 

  73. Wink M (2008) Ecological roles of alkaloids. In: Fattorusso E, Taglialatela-Scafati O (eds.) Modern alkaloids: structure, isolation synthesis and biology. Wiley-Vch, Weinheim

    Google Scholar 

  74. Wink M, Van Wyk B-E (2008) Mind-altering and poisonous plants of the world. Co-production: Briza Publications, Pretoria. ISBN 978-3-8047-2425-9

    Google Scholar 

  75. Seppnen SK, Syrj L, von Weissenberg K, Teeri TH, Paajanen L, Pappinen A (2004) Antifungal activity of stilbenes in in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Rep 22:584–593

    Google Scholar 

  76. Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    CAS  Google Scholar 

  77. Keen NT, Brurgger B (1977) Phytoalexins and chemicals that elicit their production in plants. In: Hedin PA (ed.) Host plant resistance to pests, ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  78. Eilert U, Wolters B, Constabel F (1986) Ultrastructure of acridone alkaloid idioblasts in roots and cell cultures of Ruta graveolens. Can J Bot 64:1089–1096

    CAS  Google Scholar 

  79. Shilpa K, Varun K, Lakshmi BS (2010) An alternate method of drug production: eliciting secondary metabolite production using plant cell culture. J Plant Sci 5:222–247

    Google Scholar 

  80. Ebel J, Cosio EG (1994) Elicitors of plant defense responses. In: Jeon KW, Jarvik J (eds.) International review of cytology: a survey of cell biology, vol 148. Academic, London

    Google Scholar 

  81. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    PubMed  CAS  Google Scholar 

  82. Vandelle E, Poinssot B, Wendehenne D, Bentéjac M, Pugin A (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429–440

    PubMed  CAS  Google Scholar 

  83. Fauriea B, Cluzeta S, Mérillon J-M (2009) Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. J Plant Physiol 166:1863–1877

    Google Scholar 

  84. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  85. Krisa S, Larronde F, Budzinski H, Decendit A, Deffieux G, Mérillon J-M (1999) Stilbene production by Vitis vinifera cell suspension cultures: methyl jasmonate induction and 13C biolabeling. J Nat Prod 62:1688–1690

    CAS  Google Scholar 

  86. Arora J, Roat C, Goyal S, Ramawat KG (2009) High stilbenes accumulation in root cultures of Cayratia trifolia (L.) Domin grown in shake flasks. Acta Physiol Plant 31:1307–1312

    Google Scholar 

  87. Roat C, Ramawat KG (2009) Elicitor-induced accumulation of stilbenes in cell suspension cultures of Cayratia trifolia (L.) Domin. Plant Biotechnol Rep 3:135–138

    Google Scholar 

  88. Arora J, Goyal S, Ramawat KG (2010) Enhanced stilbene production in cell cultures of Cayratia trifolia through co-treatment with abiotic and biotic elicitors and sucrose. In Vitro Cell Dev Biol Plant 46:430–436

    Google Scholar 

  89. Borie B, Jeandet P, Parize A, Bessis R, Adrian M (2004) Resveratrol and stilbene synthase mRNA production in grapevine leaves treated with biotic and abiotic phytoalexin elicitors. Am J Enol Viticult 55:60–64

    CAS  Google Scholar 

  90. Liu W, Liu C, Yang C, Wang L, Li S (2010) Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation. Food Chem 122:475–481

    CAS  Google Scholar 

  91. Belhadj A, Telef N, Saigne C, Cluzet S, Barrieu F, Hamdi S, Merillon J-M (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46:493–499

    PubMed  CAS  Google Scholar 

  92. Bru R, Sellés S, Casado-Vela J, Belchí-Navarro S, Pedreño MA (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54:65–71

    PubMed  CAS  Google Scholar 

  93. Ferri M, Tassoni A, Franceschetti M, Righetti L, Naldrett MJ, Bagni N (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9:610–624

    PubMed  CAS  Google Scholar 

  94. Ferri M, Dipalo SCF, Bagni N, Tassoni A (2011) Chitosan elicits mono-glucosylated stilbene production and release in fed-batch bioreactor cultures of grape cells. Food Chem 124:1473–1479

    CAS  Google Scholar 

  95. Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño MA (2008) Synergistic effect of methyljasmonate and cyclodextrin on stilbenes biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132–139

    PubMed  Google Scholar 

  96. Zamboni A, Vrhovsek U, Kassemeyer H-H, Mattivi F, Velasco R (2006) Elicitor – induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.). Vitis 45:63–68

    CAS  Google Scholar 

  97. Zamboni A, Gatto P, Cestaro A, Pilati S, Viola R, Mattivi F, Moser C, Velasco R (2009) Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor. BMC Genomics 10:363–376

    PubMed  Google Scholar 

  98. Laura R, Franceschetti M, Ferri M, Tassoni A, Bagni N (2007) Resveratrol production in Vitis vinifera cell suspensions treated with several elicitors. Caryologia 60:169–171

    Google Scholar 

  99. Keskin N, Kunter B (2010) Production of trans-resveratrol in callus tissue of öküzgözü (Vitis vinifera l.) in response to ultraviolet-c irradiation. J Anim Plant Sci 20:197–200

    Google Scholar 

  100. Tassoni A, Fornale S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895–905

    PubMed  CAS  Google Scholar 

  101. Telef N, Saignea C, Cluzeta S, Barrieub F, Hamdib S, Mérillon J-M (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46:493–499

    PubMed  Google Scholar 

  102. Santamaria AR, Antonacci D, Caruso G, Cavaliere C, Gubbiotti R, Laganà A, Valletta A, Pasqua G (2010) Stilbene production in cell cultures of Vitis vinifera L. cvs Red Globe and Michele Palieri elicited by methyl jasmonate. Nat Prod Res 24:1488–1498

    PubMed  CAS  Google Scholar 

  103. Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Joubert J-M, Pugin A (2006) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact 16:1118–1128

    Google Scholar 

  104. Guerrero F, Puertas B, Fernández MI, Palm M, Cantos-Villar E (2010) Induction of stilbenes in grapes by UV-C: comparison of different subspecies of Vitis. Innov Food Sci Emerg Technol 11:231–238

    CAS  Google Scholar 

  105. Schmidlin L, Poutaraud A, Claude P, Mestre P, Prado E, Santos-Rosa M, Wiedemann-Merdinoglu S, Karst F, Merdinoglu D, Hugueney P (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol 148:1630–1639

    PubMed  CAS  Google Scholar 

  106. Tamm L, Thürig B, Fliessbach A, Goltlieb AE, Karavani S, Cohen Y (2011) Elicitors and soil management to induce resistance against fungal plant diseases. Wagening J Life Sci. doi: 10.1016/j.njas.2011.01.001 (in press)

  107. Bavaresco L, Vezzulli S, Battilani P, Giorni P, Pietri A, Bertuzzi T (2003) Effect of ochratoxin A-producing Aspergilli on stilbenic phytoalexin synthesis in grapes. J Agric Food Chem 51:6151–6157

    PubMed  CAS  Google Scholar 

  108. Bavaresco L, Vezzulli S, Civardi S, Gatti M, Battilani P, Pietri A, Ferrari F (2008) Effect of lime-induced leaf chlorosis on ochratoxin A, trans-resveratrol, and ε-viniferin production in grapevine (Vitis vinifera L.) berries infected by Aspergillus carbonarius. J Agric Food Chem 56:2085–2089

    PubMed  CAS  Google Scholar 

  109. Belhadj A, Saigne C, Telef N, Cluzet S, Bouscaut J, Corio-Costet M-F, Merillon J-M (2006) Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. J Agric Food Chem 54:9119–9125

    PubMed  CAS  Google Scholar 

  110. Vezzulli S, Civardi S, Ferrari F, Bavaresco L (2007) Methyl jasmonate treatment as a trigger of resveratrol synthesis in cultivated grapevine. Am J Enol Viticult 58:530–533

    CAS  Google Scholar 

  111. Belhadj A, Telef N, Cluzet S, Bouscaut J, Corio-Costet M-F, Merillon J-M (2008) Ethephon elicits protection against Erysiphe necator in grapevine. J Agric Food Chem 56:5781–5787

    PubMed  CAS  Google Scholar 

  112. Vezzulli S, Battilani P, Bavaresco L (2007) Stilbene-synthase gene expression after Aspergillus carbonarius infection in grapes. Am J Enol Viticult 58:32–134

    Google Scholar 

  113. Shiraishi M, Chijiwa H, Fujishima H, Muramoto K (2010) Resveratrol production potential of grape flowers and green berries to screen genotypes for gray mold and powdery mildew resistance. Euphytica 176:371–381

    CAS  Google Scholar 

  114. Park S-Y, Lee W-Y, Park Y, Ahn J-K (2006) Effects of nitrogen source and bacterial elicitor on isoflavone accumulation in root cultures of Albizzia kalkora (Roxb.) Prain. J Integr Plant Biol 48:1108–1114

    CAS  Google Scholar 

  115. Fatima B, Muhammad A, Amanat A, Seema I (2009) Phytoalexins induced in Cicer arietinum characterized by LC-MS technique. Indian J Plant Physiol 14:1–6

    Google Scholar 

  116. Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL, Widholm JM (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 42:671–679

    PubMed  CAS  Google Scholar 

  117. Nagashima S, Inagaki R, Kubo A, Hirotani M, Yoshikawa T (2004) cDNA cloning and expression of isoflavonoid-specific glucosyltransferase from Glycyrrhiza echinata cell-suspension cultures. Planta 218:456–459

    PubMed  CAS  Google Scholar 

  118. Bednarek P, Frański R, Kerhoas L, Einhorn J, Wojtaszek P, Stobiecki M (2001) Profiling changes in metabolism of isoflavonoids and their conjugates in Lupinus albus treated with biotic elicitor. Phytochemistry 56:77–85

    PubMed  CAS  Google Scholar 

  119. Goâmez-Vaâsquez R, Day R, Buschmann H, Randles S, Beeching JR, Cooper RM (2004) Phenylpropanoids, phenylalanine ammonia lyase and peroxidases in elicitor-challenged Cassava (Manihot esculenta) suspension cells and leaves. Ann Bot 94:87–97

    Google Scholar 

  120. Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146:387–402

    PubMed  CAS  Google Scholar 

  121. Durango D, Quiñones W, Torres F, Rosero Y, Gil J, Echeverri F (2002) Phytoalexin accumulation in colombian bean varieties and aminosugars as elicitors. Molecules 7:817–832

    CAS  Google Scholar 

  122. Shinde AN, Malpathak N, Fulzele DP (2009) Enhanced production of phytoestrogenic isoflavones from hairy root cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnol Bioprocess Eng 14:288–294

    CAS  Google Scholar 

  123. Shinde AN, Malpathak N, Fulzele DP (2009) Optimized production of isoflavones in cell cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnol Bioprocess Eng 14:612–618

    CAS  Google Scholar 

  124. Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tissue Organ Cult 103:333–342

    CAS  Google Scholar 

  125. Udomsuk L, Jarukamjorn K, Tanaka H, Putalun W (2011) Improved isoflavonoid production in Pueraria candollei hairy root cultures using elicitation. Biotechnol Lett 33:369–374

    PubMed  CAS  Google Scholar 

  126. Kirakosyan A, Kaufman PB, Chang SC, Warber S, Bolling S, Vardapetyan H (2006) Regulation of isoflavone production in hydroponically grown Pueraria montana (kudzu) by cork pieces, XAD-4, and methyl jasmonate. Plant Cell Rep 25:1387–1391

    PubMed  CAS  Google Scholar 

  127. Goyal S, Ramawat KG (2008) Increased isoflavonoids accumulation in cell suspension cultures of Pueraria tuberosa by elicitors. Indian J Biotechnol 7:378–382

    CAS  Google Scholar 

  128. Goyal S, Ramawat KG (2008) Improvement of isoflavonoids accumulation by ethrel in cell suspension cultures of Pueraria tuberosa, a woody legume. Acta Physiol Plant 30:849–853

    CAS  Google Scholar 

  129. Tebayashi S-I, Ishihara A, Iwamura H (2001) Elicitor-induced changes in isoflavonoid metabolism in red clover roots. J Exp Bot 52:681–689

    PubMed  CAS  Google Scholar 

  130. Gaigea AR, Ayellab A, Shuai B (2010) Methyl jasmonate and ethylene induce partial resistance in Medicago truncatula against the charcoal rot pathogen Macrophomina phaseolina. Physiol Mol Plant Pathol 74:412–418

    Google Scholar 

  131. Hyodo H, Yang SF (1971) Ethylene-enhanced synthesis of phenylalanine-ammonia-lyase in pea seedlings. Plant Physiol 47:765–770

    PubMed  CAS  Google Scholar 

  132. Abeles FB (1973) Ethylene in plant biology. Springer, New York

    Google Scholar 

  133. Rhodes JM, Wooltorton LSC (1978) The biosynthesis of phenolic compounds in wounded plant storage tissues. In: Kahl G (ed.) Biochemistry of wounded plant tissue. Walter de Gruyter & Co., Berlin

    Google Scholar 

  134. Takayanagi T, Okuda T, Mine Y, Yokotsuka K (2004) Induction of resveratrol biosynthesis in skins of three grape cultivars by ultraviolet irradiation. J Jpn Soc Hortic Sci 73:193–199

    CAS  Google Scholar 

  135. Shiraishi M, Chijiwa H, Fujishima H, Muramoto K (2010) Resveratrol production potential of grape flowers and green berries to screen genotypes for gray mold and powdery mildew resistance. Euphytica 176:371–381

    CAS  Google Scholar 

  136. López-Nicolás JM, Bru R, Sánchez-Ferrer A, García-Carmona F (1995) Use of ‘soluble lipids’ for biochemical processes: linoleic acid-cyclodextrin inclusion complexes in aqueous solutions. Biochem J 308:151–154

    PubMed  Google Scholar 

  137. Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617

    PubMed  CAS  Google Scholar 

  138. Dobrowolski MP, Shearer BL, Colquhoun IJ, O’Brien PA, Hardy GEStJ (2008) Selection for decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use of fungicide. Plant Pathol 57:928–936

    CAS  Google Scholar 

  139. Lovatt CJ, Mikkelsen RL (2006) Phosphite fertilizers: what are they? Can you use them? What can they do? Better Crops 90:1–13

    Google Scholar 

  140. Wong M-H, McComb JA, Hardy GEStJ, O’ Brien PA (2009) Phosphite induces expression of a putative proteophosphoglycan gene in Phytophthora cinnamomi. Australas Plant Pathol 38:235–241

    CAS  Google Scholar 

  141. Daniel R, Wilson BA, Cahill DM (2005) Potassium phosphonate alters the defence response of Xanthorrhoea australis following infection by Phytophthora cinnamomi. Australas Plant Pathol 34:541–548

    CAS  Google Scholar 

  142. Grant BR, Dunstan RH, Griffith JM, Niere JO, Smillie RH (1990) The mechanism of phosphonic (phosphorous) acid action in Phytophthora. Australas J Plant Pathol 19:115–121

    Google Scholar 

  143. Guest D, Grant B (1991) The complex action of phosphonates as antifungal agents. Biol Rev Camb Philos Soc 66:159–187

    Google Scholar 

  144. Ye H, Huang L-L, Chen S-D, Zhong J-J (2004) Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis. Biotechnol Bioeng 88:788–795

    PubMed  CAS  Google Scholar 

  145. Cai Z, Riedel H, Thaw Saw NM, Kütük O, Mewis I, Jäger H, Knorr D, Smetanska I (2010) Effects of pulsed electric field on secondary metabolism of Vitis vinifera L. cv. Gamay Fréaux suspension culture and exudates. Appl Biochem Biotechnol 164(4):443–453. doi:10.1007/s12010-010-9146-2

    PubMed  Google Scholar 

  146. Gueven A, Knorr D (2011) Isoflavonoid production by soy plant callus suspension culture. J Food Eng 103:237–243

    CAS  Google Scholar 

  147. Domard A, Domard M (2002) Chitosan: structure – properties relationship and biomedical applications. In: Dumitriu S (ed) Polymeric biomaterials. Marcel Dekker, New York

    Google Scholar 

  148. Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    PubMed  CAS  Google Scholar 

  149. Peniston QP, Johnson E (1980) Process for the manufacture of chitosan. In: Walker R, Suzanne M, Phil B, Alistair G (eds.) Evaluation of potential for chitosan to enhance plant defence. Rural Industries Research and Development Corporation, Australia, US patent 4,195,175, 5 pp

    Google Scholar 

  150. Yin H, Zhao X, Du Y (2010) Oligochitosan: a plant diseases vaccine—a review. Carbohydr Polym 82:1–8

    CAS  Google Scholar 

  151. Trotel-Aziz P, Couderchet M, Vernet G, Aziz A (2006) Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur J Plant Pathol 114:405–413

    CAS  Google Scholar 

  152. Giannakis C, Bucheli CS, Skene KGM, Robinson SP, Steele Scott N (1998) Chitinase and ß-1,3-glucanase in grapevine leaves: a possible defence against powdery mildew infection. Aust J Grape Wine Res 4:14–22

    CAS  Google Scholar 

  153. Gagnon H, Ibrahim RK (1997) Effects of various elicitors on the accumulation and secretion of isoflavonoids in white lupin. Phytochemistry 44:1463–1467

    CAS  Google Scholar 

  154. Benhamou N, Lafontaine PJ, Nicole M (1994) Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84:1432–1444

    CAS  Google Scholar 

  155. Lafontaine PJ, Benhamou N (1996) Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol Sci Technol 6:111–124

    Google Scholar 

  156. Zhang D, Quantick PC (1997) Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharvest Biol Technol 12:195–202

    CAS  Google Scholar 

  157. Armero J, Requejo R, Jorrín J, López-Valbuena R, Tena M (2001) Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. Plant Physiol Biochem 9:785–795

    Google Scholar 

  158. Al-Tawaha AM, Seguin P, Smith DL, Beaulieu C (2005) Biotic elicitors as a means of increasing isoflavone concentration of soybean seeds. Ann Appl Biol 146:303–310

    Google Scholar 

  159. Boué S, Shih F, Shih B, Daigle K, Carter-Wientjes C, Cleveland T (2008) Effect of biotic elicitors on enrichment of antioxidant properties and induced isoflavones in soybean. J Food Sci 73:H43–H49

    PubMed  Google Scholar 

  160. Modolo LV, Cunha FQ, Braga MR, Salgado I (2002) Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol 130:1288–1297

    PubMed  CAS  Google Scholar 

  161. FdosS K, Aidar MPM, Salgado I, Braga MR (2009) Elevated CO2 atmosphere enhances production of defense-related flavonoids in soybean elicited by NO and a fungal elicitor. Environ Exp Bot 65:319–329

    Google Scholar 

  162. Abbasi PA, Graham MY, Graham TL (2001) Effects of soybean genotype on the glyceollin elicitation competency of cotyledon tissues to Phytophthora sojae glucan elicitors. Physiol Mol Plant Pathol 59:95–105

    CAS  Google Scholar 

  163. Shimada N, Akashi T, Aoki T, Ayabe S-I (2000) Induction of isoflavonoid pathway in the model legume Lotus japonicus: Molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci 160:37–47

    PubMed  CAS  Google Scholar 

  164. Bednarek P, Kerhoas L, Einhorn J, Frański R, Wojtaszek P, Rybus-Zając M, Stobiecki M (2003) Profiling of flavonoid conjugates in Lupinus albus and Lupinus angustifolius responding to biotic and abiotic stimuli. J Chem Ecol 29:1127–1142

    PubMed  CAS  Google Scholar 

  165. Salles II, Blount JW, Dixon RA, Schubert K (2002) Phytoalexin induction and β-1,3-glucanase activities in Colletotrichum trifolii infected leaves of alfalfa (Medicago sativa L.). Physiol Mol Plant Pathol 61:89–101

    CAS  Google Scholar 

  166. Jasińskia M, Kachlickib P, Rodziewicza P, Figlerowicza M, Stobiecki M (2009) Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal pathogen Phoma medicaginis. Plant Physiol Biochem 47:847–853

    Google Scholar 

  167. Sivesind E, Seguin P (2006) Effects of foliar application of elicitors on red clover isoflavone content. J Agron Crop Sci 192:50–54

    CAS  Google Scholar 

  168. Nisizawa K, Yamaguchi T, Handa N, Maeda M, Yamazaki H (1963) Chemical nature of a uronic acid-containing polysaccharide in the peritrophic membrane of the silkworm. J Biochem 54:419–426

    PubMed  CAS  Google Scholar 

  169. Nakamura K, Akashi T, Aoki T, Kawaguchi K, Ayabe S (1999) Induction of isoflavonoid and retrochalcone branches of the flavonoid pathway in cultured Glycyrrhiza echinata cells treated with yeast extract. Biosci Biotechnol Biochem 63:1618–1620

    PubMed  CAS  Google Scholar 

  170. He X-Z, Dixon RA (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in Alfalfa. Plant Cell 12:1689–1702

    PubMed  CAS  Google Scholar 

  171. Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–794

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishan G. Ramawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Goyal, S., Lambert, C., Cluzet, S., Mérillon, J.M., Ramawat, K.G. (2012). Secondary Metabolites and Plant Defence. In: Mérillon, J., Ramawat, K. (eds) Plant Defence: Biological Control. Progress in Biological Control, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1933-0_5

Download citation

Publish with us

Policies and ethics