Skip to main content

Pathogen-Responsive cis-Elements

  • Chapter
  • First Online:
Book cover Plant Defence: Biological Control

Part of the book series: Progress in Biological Control ((PIBC,volume 12))

Abstract

Different types of pathogen-responsive cis-elements have been identified from the promoters of plant genes involved in host–pathogen interactions. These cis-elements are directly controlled either by pathogen effectors or by plant regulatory proteins and activate or suppress gene expression after pathogen invasion. These elements provide the basis for further studies of defense signal transduction and the molecular mechanisms of defense responses. These elements also represent a valuable resource that can be used to design synthetic promoters for specifically regulating target genes in plant–pathogen interactions for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185. doi:10.1016/j.pbi.2009.12.010 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  2. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S (2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev 20:1250–1255. doi:10.1101/gad.1416306

    Article  PubMed  CAS  Google Scholar 

  3. Yuan M, Chu Z, Li X, Xu C, Wang S (2009) Pathogen-induced expressional loss of function is the key factor in race-specific bacterial resistance conferred by a recessive R gene xa13 in rice. Plant Cell Physiol 50:947–955. doi:10.1093/pcp/pcp046

    Article  PubMed  CAS  Google Scholar 

  4. Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11 N3. Plant Cell 22:3864–3876. doi:10.1105/tpc.110.078964

    Article  PubMed  CAS  Google Scholar 

  5. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang GL, White FF, Yin Z (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125. doi:10.1038/nature03630

    Article  PubMed  CAS  Google Scholar 

  6. Römer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–648. doi:10.1126/science.1144958

    Article  PubMed  Google Scholar 

  7. Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–651. doi:10.1126/science.1144956

    Article  PubMed  CAS  Google Scholar 

  8. Kay S, Hahn S, Marois E, Wieduwild R, Bonas U (2009) Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3Deltarep16. Plant J 59:859–871. doi:10.1111/j.1365-313X.2009.03922.x

    Article  PubMed  CAS  Google Scholar 

  9. Römer P, Recht S, Lahaye T (2009) A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proc Natl Acad Sci USA 106:20526–20531. doi:10.1073/pnas.0908812106

    Article  PubMed  Google Scholar 

  10. Römer P, Strauss T, Hahn S, Scholze H, Morbitzer R, Grau J, Bonas U, Lahaye T (2009) Recognition of AvrBs3-like proteins is mediated by specific binding to promoters of matching pepper Bs3 alleles. Plant Physiol 150:1697–1712. doi:10.1104/pp.109.139931

    Article  PubMed  Google Scholar 

  11. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436. doi:10.1146/annurev-phyto-080508-081936

    Article  PubMed  CAS  Google Scholar 

  12. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401. doi:10.1016/j.pbi.2010.04.010 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  13. Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218:127–136. doi:10.1007/BF00330575

    Article  PubMed  CAS  Google Scholar 

  14. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501. doi:10.1126/science.1178817

    Article  PubMed  CAS  Google Scholar 

  15. Szurek B, Rossier O, Hause G, Bonas U (2002) Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol 46:13–23. doi:10.1046/j.1365-2958.2002.03139.x

    Article  PubMed  CAS  Google Scholar 

  16. Wu L, Goh ML, Sreekala C, Yin Z (2008) XA27 depends on an amino-terminal signal-anchor-like sequence to localize to the apoplast for resistance to Xanthomonas oryzae pv oryzae. Plant Physiol 148:1497–1509. doi:10.1104/pp.108.123356

    Article  PubMed  CAS  Google Scholar 

  17. Yuan M, Chu Z, Li X, Xu C, Wang S (2010) The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22:3164–3176. doi:10.1105/tpc.110.078022

    Article  PubMed  CAS  Google Scholar 

  18. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512. doi:10.1126/science.1178811

    Article  PubMed  CAS  Google Scholar 

  19. Römer P, Recht S, Strauss T, Elsaesser J, Schornack S, Boch J, Wang S, Lahaye T (2010) Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol 187:1048–1057. doi:10.1111/j.1469-8137.2010.03217.x

    Article  PubMed  Google Scholar 

  20. Yuan T, Li X, Xiao J, Wang S (2011) Characterization of Xanthomonas oryzae-responsive cis-acting element in the promoter of rice race-specific susceptibility gene Xa13. Mol Plant 4(2):300–309. doi:10.1093/mp/ssq076

    Article  PubMed  CAS  Google Scholar 

  21. Chu Z, Ouyang Y, Zhang J, Yang H, Wang S (2004) Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13. Mol Genet Genomics 271:111–120. doi:10.1007/s00438-003-0964-6

    Article  PubMed  CAS  Google Scholar 

  22. Eulgem T (2005) Regulation of the Arabidopsis defense transcriptiome. Trends Plant Sci 10:71–78. doi:10.1016/j.tplants.2004.12.006 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  23. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206. doi:10.1016/S1360-1385(00)01600-9 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  24. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258. doi:10.1016/j.tplants.2010.02.006 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  25. Qiu D, Xiao J, Xie W, Cheng H, Li X, Wang S (2009) Exploring transcriptional signaling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biol 9:74. doi:10.1186/1471-2229-9-74

    Article  PubMed  Google Scholar 

  26. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983. doi:10.1038/415977a

    Article  PubMed  CAS  Google Scholar 

  27. Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 Act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302. doi:10.1105/tpc.106.044149

    Article  PubMed  CAS  Google Scholar 

  28. Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S (2008) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 1:538–551. doi:10.1093/mp/ssn012

    Article  PubMed  CAS  Google Scholar 

  29. Pape S, Thurow C, Gatz C (2010) The Arabidopsis thaliana PR-1 promoter contains multiple integration sites for the coactivator NPR1 and the repressor SNI1. Plant Physiol 154(4):1805–1818. doi:10.1104/pp.110.165563

    Article  PubMed  CAS  Google Scholar 

  30. Pandey SP, Roccaro M, Schön M, Logemann E, Somssich IE (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64:912–923. doi:10.1111/j.1365-313X.2010.04387.x

    Article  PubMed  CAS  Google Scholar 

  31. Mohr TJ, Mammarella ND, Hoff T, Woffenden BJ, Jelesko JG, McDowell JM (2010) The Arabidopsis downy mildew resistance gene RPP8 is induced by pathogens and salicylic acid and is regulated by W box cis elements. Mol Plant Microbe Interact 23:1303–1315. doi:10.1094/MPMI-01-10-0022

    Article  PubMed  CAS  Google Scholar 

  32. Lippok B, Birkenbihl RP, Rivory G, Brümmer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe Interact 20:420–429. doi:10.1094/MPMI-20-4-0420

    Article  PubMed  CAS  Google Scholar 

  33. Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499. doi:10.1094/MPMI-20-5-0492

    Article  PubMed  CAS  Google Scholar 

  34. Cai M, Qiu D, Yuan T, Ding X, Li H, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31:86–96. doi:10.1111/j.1365-3040.2007.01739.x

    Article  PubMed  CAS  Google Scholar 

  35. Tao Z, Liu H, Qiu D, Zhou Y, Li X, Xu C, Wang S (2009) A pair of allelic WRKY Genes play opposite role in rice-bacteria interactions. Plant Physiol 151:936–948. doi:10.1104/pp. 109.145623

    Article  PubMed  CAS  Google Scholar 

  36. Rushton PJ, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762. doi:10.1105/tpc.010412

    Article  PubMed  CAS  Google Scholar 

  37. Broekaert WF, Delauré SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416. doi:10.1146/annurev.phyto.44.070505.143440

    Article  PubMed  CAS  Google Scholar 

  38. Van der Ent S, Van Wees SC, Pieterse CM (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588. doi:10.1016/j.phytochem.2009.06.009 DOI:dx.doi.org

    Article  PubMed  Google Scholar 

  39. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206. doi:10.1146/annurev.phyto.050908.135202

    Article  PubMed  CAS  Google Scholar 

  40. Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317. doi:10.1016/j.tplants.2009.03.006 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  41. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404. doi:10.1105/tpc.12.3.393

    Article  PubMed  CAS  Google Scholar 

  42. Pozo MJ, Van Der Ent S, Van Loon LC, Pieterse CM (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol 180:511–523. doi:10.1111/j.1469-8137.2008.02578.x

    Article  PubMed  CAS  Google Scholar 

  43. Garretón V, Carpinelli J, Jordana X, Holuigue L (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol 130:1516–1526. doi:10.1104/pp. 009886

    Article  PubMed  Google Scholar 

  44. Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144:336–346. doi:10.1104/pp. 106.095299

    Article  PubMed  CAS  Google Scholar 

  45. Desveaux D, Subramaniam R, Després C, Mess JN, Lévesque C, Fobert PR, Dangl JL, Brisson N (2004) A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6:229–240. doi:10.1016/S1534-5807(04)00028-0 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  46. Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058. doi:10.1074/jbc.M207941200

    Article  PubMed  CAS  Google Scholar 

  47. Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW (2009) Ca(2+)/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1158. doi:10.1038/nature07612

    Article  PubMed  CAS  Google Scholar 

  48. van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJ (2008) A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146:1983–1995. doi:10.1104/pp. 107.112789

    Article  PubMed  Google Scholar 

  49. Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C, Rathjen JP (2010) Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci USA 107:14502–14507. doi:10.1073/pnas.1003347107

    Article  PubMed  CAS  Google Scholar 

  50. Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H, Zhou JM (2009) ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21:2527–2540. doi:10.1105/tpc.108.065193

    Article  PubMed  CAS  Google Scholar 

  51. Solano R, Nieto C, Avila J, Cañas L, Diaz I, Paz-Ares J (1995) Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. EMBO J 14:1773–1784

    PubMed  CAS  Google Scholar 

  52. Yang Y, Klessig DF (1996) Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc Natl Acad Sci USA 93:14972–14977

    Article  PubMed  CAS  Google Scholar 

  53. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161. doi:10.1104/pp. 104.041442

    Article  PubMed  CAS  Google Scholar 

  54. Zhou DX (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4:210–214. doi:10.1016/S1360-1385(99)01418-1 DOI:dx.doi.org

    Article  PubMed  Google Scholar 

  55. da Costa e Silva O, Klein L, Schmelzer E, Trezzini GF, Hahlbrock K (1993) BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response. Plant J 4:125–135. doi:10.1046/j.1365-313X.1993.04010125.x

    Article  PubMed  Google Scholar 

  56. Sugimoto K, Takeda S, Hirochika H (2000) MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Tto1 and defense-related genes. Plant Cell 12:2511–2528. doi:10.1105/tpc.12.12.2511

    Article  PubMed  CAS  Google Scholar 

  57. Maeda K, Kimura S, Demura T, Takeda J, Ozeki Y (2005) DcMYB1 acts as a transcriptional activator of the carrot phenylalanine ammonia-lyase gene (DcPAL1) in response to elicitor treatment, UV-B irradiation and the dilution effect. Plant Mol Biol 59:739–752. doi:10.1007/s11103-005-0910-6

    Article  PubMed  CAS  Google Scholar 

  58. Després C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290. doi:10.1105/tpc.12.2.249

    Article  PubMed  Google Scholar 

  59. Fode B, Siemsen T, Thurow C, Weigel R, Gatz C (2008) The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell 20:3122–3135. doi:10.1105/tpc.12.2.279

    Article  PubMed  CAS  Google Scholar 

  60. Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50:128–139. doi:10.1111/j.1365-313X.2007.03039.x

    Article  PubMed  CAS  Google Scholar 

  61. Hao D, Yamasaki K, Sarai A, Ohme-Takagi M (2002) Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry 41:4202–4208. doi:10.1021/bi015979v

    Article  PubMed  CAS  Google Scholar 

  62. Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463. doi:10.1093/emboj/18.16.4455

    Article  PubMed  CAS  Google Scholar 

  63. Wang S, Yang S, Yin Y, Xi J, Li S, Hao D (2009) Molecular dynamics simulations reveal the disparity in specific recognition of GCC-box by AtERFs transcription factors super family in Arabidopsis. J Mol Recognit 22:474–479. doi:10.1002/jmr.965

    Article  PubMed  CAS  Google Scholar 

  64. Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92. doi:10.1007/s11103-008-9353-1

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yuan, T., Wang, S. (2012). Pathogen-Responsive cis-Elements. In: Mérillon, J., Ramawat, K. (eds) Plant Defence: Biological Control. Progress in Biological Control, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1933-0_16

Download citation

Publish with us

Policies and ethics