Skip to main content

Plant Defence Against Heavy Metal Stress

  • Chapter
  • First Online:
Plant Defence: Biological Control

Part of the book series: Progress in Biological Control ((PIBC,volume 12))

Abstract

Heavy metals include both essential as well as nonessential elements. The excess concentration of heavy metals in the soil may be due to natural ­mineralization or due to anthropogenic factors. Certain plants are capable to develop tolerance and colonize the metalliferous soils. Certain plants partially exclude the metals from their system, others show complete exclusion, and still others show operation of absorption barriers whereas there are others which accumulate them. Some plant species- the hyperaccumulators, have the ability to accumulate large amounts of elements in their tissues without showing any symptoms of toxicity. All hyperaccumulator plant species are endemic to metalliferous soils indicating hyperaccumulation to be an adaptation towards heavy metal stress which probably has evolved as a defense mechanism against herbivores or pathogens.

Plants may adopt different defense strategies to detoxify the excessive concentration of heavy metals occurring in their surroundings. The detoxification may result at cell wall, cell membrane or protoplasm level. Plants may transport the metals to various compartments, especially to apparent free spaces, intercellular or intracellular vacuoles and bodies like lysosomes to sequester the metals. Plants may achieve metal tolerance by protecting the integrity of plasma membrane, by the use of heat shock proteins or metallothioneins and by chelating heavy metals. It appears that there is no single mechanism that can account for tolerance to a wide range of heavy metals and probably more than one mechanism may be responsible for detoxification of a particular metal. How plants defend themselves to toxic heavy metals is discussed in the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levitt J (1980) Responses of plants to environmental stresses, vol I & II. Academic, New York

    Google Scholar 

  2. Sittig M (1976) Toxic metals: pollution control and worker protection. Noyes Data Corporation, Park Ridge

    Google Scholar 

  3. Anon (1964) Encyclopedia of chemical sciences. Van Nostrand, Princeton

    Google Scholar 

  4. Lapedes DN (1974) Encyclopedia of environmental science. McGraw-Hill, New York

    Google Scholar 

  5. Venugopal B, Luckey T (1975) Toxicity of non radioactive heavy metals and their salts. In: Coulston F (ed) Heavy metal toxicity, safety and hormology. Academic/George Thieme Stuttagart, New York

    Google Scholar 

  6. Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. In: Pirson A, Zimmerman MH (eds) Encyclopedia of plant physiology. Springer, Berlin

    Google Scholar 

  7. Nieboer E, Richardson DHS (1980) The replacement of the nondescript term ‘heavy metal’ by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B 1:2–26

    Article  Google Scholar 

  8. Arnon DI, Stout PR (1939) Mo as an essential element for higher plants. Plant Physiol 14:599–602

    Article  PubMed  CAS  Google Scholar 

  9. Timperley MH, Brooks RR, Peterson PJ (1970) The significance of essential and nonessential trace elements in plants in relation to biogeochemical prospecting. J Appl Ecol 7:429

    Article  Google Scholar 

  10. Ahrens LH (1954) The lognormal distribution of the elements (2). Geochim Cosmochim Acta 6:121–131

    Article  CAS  Google Scholar 

  11. Liebscher K, Smith H (1968) Essential and nonessential trace elements. A method of determining whether an element is essential or nonessential in human tissue. Arch Environ Health 17:881–890

    PubMed  CAS  Google Scholar 

  12. Aery NC (1978) Geobotanical studies of the region of zinc ores deposits in the Udaipur Region. Ph.D. thesis. M.L. Sukhadia University, Udaipur

    Google Scholar 

  13. Wierzbicka M (1998) Lead in the apoplast of Allium cepa L. root tips –ultrastructural studies. Plant Sci 133:105–119

    Article  CAS  Google Scholar 

  14. Sauerbeck DR (1991) Plant, element and soil properties governing plant uptake and availability of heavy metals derived from sewage sludge. Water Air Soil Pollut 227:57–58

    Google Scholar 

  15. Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in cadmium-treated lettuce. Plant Physiol Biochem 32:561–570

    CAS  Google Scholar 

  16. Romheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127–134

    Article  Google Scholar 

  17. Shojima S, Nishizawa N, Fushiya S, Nozoe S, Irifune T, Mori S (1990) Biosynthesis of phytosiderophores in vitro biosynthesis of 2’-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol 93:1497–1503

    Article  PubMed  CAS  Google Scholar 

  18. Mori S, Nishizawa N (1989) Identification of barley chromosome No. 4, possible encoder of genes of mugineic acid synthesis from 2’-deoxymugineic acid using wheat-barley addition lines. Plant Cell Physiol 30:1057–1061

    CAS  Google Scholar 

  19. Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10

    PubMed  CAS  Google Scholar 

  20. Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19–48

    Article  PubMed  CAS  Google Scholar 

  21. Goldschmidt VM (1937) The principles of the distribution of the chemical elements in minerals and rocks. J Chem Soc 1937:655–673

    Google Scholar 

  22. Aery NC, Tiagi YD (1987) Biogeochemistry of lead at Zawar Mines, Udaipur (India). In: Agrawal VP, Rana SVS (eds) Science development and environment. Society of Biosciences, Muzaffarnagar

    Google Scholar 

  23. Aery NC, Tiagi YD (1988) Accumulation of cadmium by plants of Zawar mines, Rajasthan, India. Acta Biol Hung 39:87–98

    PubMed  CAS  Google Scholar 

  24. Brooks RR, Reeves RD, Baker AJM (1992) The serpentine vegetation of Goiás State, Brazil. In: Proctor J, Baker AJM, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept Ltd, Andover

    Google Scholar 

  25. Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  26. Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environ Pollut Ser A Ecol Biol 31:277–285

    Article  CAS  Google Scholar 

  27. Baker AJM (1981) Accumulators and excluders – Strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  28. Aery NC, Tiagi YD (1986) Bioindicators and accumulators in geobotanical & biogeochemical prospecting of metals. Acta Biol Hung 37:67–78

    PubMed  CAS  Google Scholar 

  29. Tiagi YD, Aery NC (1986) Biogeochemical studies at the Khetri Copper deposits of Rajasthan, India. J Geochem Explor 26:267–274

    Article  CAS  Google Scholar 

  30. Berry WL (1986) Plant factors influencing the use of plant analysis as a tool for biogeochemical properties. In: Carlisle D, Kaplan IR, Watterson JR (eds) Mineral exploration: biological systems and organic matter, vol 5. Prentice-Hall, New York

    Google Scholar 

  31. Baker AJM, Brooks RR, Kersten WJ (1985) Accumulation of nickel by Psychotria species from the Pacific Basin. Taxon 34:89–95

    Article  Google Scholar 

  32. Ernst WHO (1974) Schwermetallvegetation der Erde. G. Fischer Verlag, Stuttgart

    Google Scholar 

  33. Ernst WHO (1990) Mine vegetation in Europe. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton

    Google Scholar 

  34. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  35. Symeonidis BL, McNeilly T, Bradshaw AD (1985) Differential tolerance of three cultivars of Agrostis capillaries L. to cadmium, copper, lead, nickel and zinc. New Phytol 101:309–315

    Article  CAS  Google Scholar 

  36. Kakes P (1977) Genecological investigations on zinc plants II. Introgression in a small population of the zinc violet Viola calaminaria ssp. westfalica (Lej.) Ernst. Acta Bot Neerl 26:385–400

    Google Scholar 

  37. Duvigneaud P (1958) The vegetation of Katanga and its metalliferous soils (in French). Soc R Bot Belg 90:127–286

    Google Scholar 

  38. Malaisse F, Gregoire J, Brooks RR, Morrison RS, Reeves RD (1978) Aeolanthus biformifolius De Wild.: a hyperaccumulator of copper from Zaïre. Science 199(4331):887–888

    Article  PubMed  CAS  Google Scholar 

  39. Cole MM, Le Roex HD (1978) The role of geobotany, biogeochemistry and geochemistry in mineral exploration in South West Africa and Botswana - a case history. Trans Geol Soc S Afr 81:277–317

    CAS  Google Scholar 

  40. Wild H (1968) Geobotanical anomalies in Rhodesia. 3. The vegetation of nickel-bearing soils. Kirkia 7:1–62

    Google Scholar 

  41. Nicolls OW, Provan DMJ, Cole MM, Tooms JS (1965) Geobotany and geochemistry in mineral exploration in the Dugald River Area, Cloncurry district, Australia. Trans Inst Min Metall 74:695–699

    CAS  Google Scholar 

  42. Cole MM, Provan DMJ, Tooms JS (1968) Geobotany, biogeochemistry and geochemistry in the Bulman-Waimuna Springs Area, Northern Territory, Australia. Trans Inst Min Metall Sec B 74:81–104

    Google Scholar 

  43. Cannon HL (1957) Description of indicator plants and methods of botanical prospecting for uranium deposits on the Colorado Plateau. US Geol Surv Bull 1030-M:399–516

    Google Scholar 

  44. Cole MM (1973) Geobotanical and biogeochemical investigations in the sclerophyllous woodland and shrub associations of the eastern goldfield area of Western Australia, with particular reference to the role of Hybanthus floribundus (Lindl.) F Muell as a nickel indicator and accumulator plant. J Appl Ecol 10:269–320

    Article  Google Scholar 

  45. Braun-Blanquet J (1932) Plant sociology. Mc Graw Hill Book Co, New York/London

    Google Scholar 

  46. Tiagi YD, Aery NC (1982) Geobotanical studies on zinc deposit areas of Zawar Mines, Udaipur. Vegetatio 50:65–70

    Article  Google Scholar 

  47. Aery NC (2010) Manual of environmental analysis. CRC Press, Boca Raton

    Google Scholar 

  48. Malyuga DP (1964) Biogeochemical methods of prospecting. Consultants Bureau, New York

    Google Scholar 

  49. Brooks RR (1983) Biological methods of prospecting for minerals. John Wiley and Sons, New York

    Google Scholar 

  50. Duvigneaud P, Denaeyer de-Smet S (1963) Cuivre et vegetation an Katanga. Bull Soc Roy Belg 96:93–231

    Google Scholar 

  51. Lambinon J, Auquier P (1964) La florae et La vegetation des terrains calaminaires de la Wallonie Septrentrionale et de la Rhenanie Aixoise. Types Chorologiques et groupes, ecologiques. Natura Mosana 16(4):113–130

    Google Scholar 

  52. Aery NC (1995) Geobotanical and biogeochemical studies on certain uranium deposits of Rajasthan. Final Report on the project sponsored by Department of Atomic Energy, Government of India, Udaipur

    Google Scholar 

  53. Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Article  Google Scholar 

  54. Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  55. Jaffré T (1980) Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle-Calédonie. Coll Trav Doc ORSTOM 124:1–274

    Google Scholar 

  56. Peterson PJ (1983) Adaptation to toxic metals. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilisation by plants. Academic, London

    Google Scholar 

  57. Meharg AA (2005) Mechanisms of plant tolerance to metal and metalloid ions and potential biotechnological applications. Plant Soil 274:161–171

    Article  CAS  Google Scholar 

  58. Baker AJM, McGrath SP, Reeves RD, Smith JAC (1998) Metal hyperaccumulator plants: a review of the biological resource for possible exploitation in the phytoremediation of metal-polluted soils. In: Banuelos GS, Terry N, Vangronsveld J (eds) Phytoremediation. Ann Arbor Publishers, Michigan

    Google Scholar 

  59. Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  60. Ernst WHO, Schat H, Verkleij JAC (1990) Evolutionary biology of metal resistance in Silene vulgaris. Evol Trends Plant 4:45–51

    Google Scholar 

  61. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  PubMed  CAS  Google Scholar 

  62. Baker AJM, Proctor J, van Balgooy MMJ, Reeves RD (1992) Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept Ltd, Andover

    Google Scholar 

  63. Huitson SB, Macnair MR (2003) Does zinc protect the zinc hyperaccumulator Arabidopsis halleri from herbivory by snails? New Phytol 159:453–459

    Article  CAS  Google Scholar 

  64. Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton

    Google Scholar 

  65. Mengoni A, Schat H, Vangronsveld J (2010) Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331:5–16

    Article  CAS  Google Scholar 

  66. Brooks RR (1977) Copper and cobalt uptake by Haumaniastrum species. Plant Soil 48:541–544

    Article  CAS  Google Scholar 

  67. Malaisse F, Grégoire J, Morrison RS, Brooks RR, Reeves RD (1979) Copper and cobalt in vegetation of Fungurume, Shaba Province, Zaïre. Oikos 33:472–478

    Article  CAS  Google Scholar 

  68. Wild H (1974) Indigenous plants and chromium in Rhodesia. Kirkia 9:233–241

    Google Scholar 

  69. Jaffré T (1979) Accumulation du manganèse par les Protéacées de Nouvelle-Calédonie. C R Acad Sci Paris Sér D 289:425–428

    Google Scholar 

  70. Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum L (Cruciferae). Proc R Soc Lond B 203:387–403

    Article  PubMed  CAS  Google Scholar 

  71. Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Lond B 266:2175–2179

    Article  CAS  Google Scholar 

  72. Assunção AGL, Bookun WMT, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003) A co-segregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator Thlaspi caerulescens. New Phytol 159:383–390

    Article  CAS  Google Scholar 

  73. Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18

    Article  CAS  Google Scholar 

  74. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  CAS  Google Scholar 

  75. Chaney RL, Reeves PG, Ryan JA, Simmons RW, Welch RM, Angle JS (2004) An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soil to prevent Cd risks. Biometals 17:549–553

    Article  PubMed  CAS  Google Scholar 

  76. Prasad R, Verma M, Kumari K (2010) The phytoavailability and phytomining of uranium. In: Proceedings of the XI International Seminar on Mineral Processing Technology (MPT-2010) Editors: R. Singh, A. Das, P.K. Banerjee, K.K. Bhattacharyya and N.G. Goswami © NML Jamshedpur, 1(Section 8), pp 642–650

    Google Scholar 

  77. Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  Google Scholar 

  78. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  79. Dietz KJ, Baier M, Kramer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants – from molecules to ecosystems. Springer, Berlin

    Google Scholar 

  80. Azmat R, Haider S, Nasreen H, Aziz F (2009) Viable alternative mechanism in adapting the plants to heavy metal environment. Pak J Bot 41:2729–2738

    Google Scholar 

  81. Weryszko-Chmielewska E, Chwil M (2005) Lead – induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L) Merr). Soil Sci Plant Nutr 52:203–212

    Article  Google Scholar 

  82. Reilly C, Jane S (1971) Copper Tolerance in Becium homblei. Nature 230:403

    Article  CAS  Google Scholar 

  83. Wainwright SJ, Woolhouse HW (1975) Physiological mechanisms of heavy metal tolerance in plants. In: Chadwick MJ, Goodman GT (eds) The ecology of resources degradation and renewal, 15th symposium of the British Ecological Society, 10–12 July 1973. Blackwell Scientific, Oxford

    Google Scholar 

  84. Gregory RPG, Bradshaw AD (1965) Heavy metal tolerance in Agrostis tenuis Sibth. and other grasses. New Phytol 64:131–143

    Article  CAS  Google Scholar 

  85. Urquhart C (1971) Genetics of lead tolerance in Festuca ovina. Heredity 26:19–33

    Article  Google Scholar 

  86. Colpaert JV, Van Assche JA (1992) Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143:201–211

    Article  CAS  Google Scholar 

  87. Huttermann A, Arduini I, Godbold DL (1999) Metal pollution and forest decline. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants - from molecules to ecosystems. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  88. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  89. De DN (2000) Plant cell vacuoles. CSIRO Publishing, Collingwood

    Google Scholar 

  90. Mathys W (1977) The role of malate, oxalate and mustard oil glucosides in the evolution of zinc resistance in herbage plants. Physiol Plant 40:130–136

    Article  CAS  Google Scholar 

  91. Davies KL, Davies MS, Francis D (1991) Zinc- induced vacuolation in root meristematic cells of Festuca rubra L. Plant Cell Environ 14:399–406

    Article  CAS  Google Scholar 

  92. Verkleij JAC, Koevoets PLM, Blake-Kalff MMA, Chardonnens AN (1998) Evidence for an important role of the tonoplast in the mechanism of naturally selected Zn tolerance in Silene vulgaris. J Plant Physiol 153:188–191

    CAS  Google Scholar 

  93. Chardonnens AN, Koevoets PLM, van Zanten A, Schat H, Verkleij JAC (1999) Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene vulgaris. Plant Physiol 120:779–785

    Article  PubMed  CAS  Google Scholar 

  94. Bringezu K, Lichtenberger O, Leopold I, Neumann D (1999) Heavy metal tolerance of Silene vulgaris. J Plant Physiol 154:536–546

    CAS  Google Scholar 

  95. Farago ME, Pitt MJ (1977) Plants which accumulate metals. Part III. A further investigation of two Australian species which take up zinc. Inorg Chim Acta 24:211–214

    Article  CAS  Google Scholar 

  96. Turner RG, Marshall C (1972) The accumulation of zinc by subcellular fractions of roots of Agrostis tenuis Sibth., in relation to zinc tolerance. New Phytol 71:671–676

    Article  CAS  Google Scholar 

  97. Wyn Jones RG, Sutcliffe M, Marshall C (1971) Physiological and biochemical basis for heavy metal tolerance in clones of Agrostis tenuis. In: Samish RM (ed) Recent advances in plant nutrition. Gordon and Breach Science Publishers, New York/London/Paris

    Google Scholar 

  98. Farago ME, Mullen WA, Cole MM, Smith RF (1980) A study of Armeria maritima (Mill) Willdenow growing in a copper-impregnated bog Environmental Pollution Series A. Ecol Biol 21:225–244

    CAS  Google Scholar 

  99. Konno H, Nakashima S, Katoh K (2010) Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema. J Plant Physiol 167:358–364

    Article  PubMed  CAS  Google Scholar 

  100. Douchiche O, Soret-Morvan O, Chaïbi W, Morvan C, Paynel F (2010) Characteristics of cadmium tolerance in ‘Hermes’ flax seedlings: contribution of cell walls. Chemosphere 81:1430–1436

    Article  PubMed  CAS  Google Scholar 

  101. Colzi I, Doumett S, Del Bubba M, Fornaini J, Arnetoli M, Gabbrielli R, Gonnelli C (2011) On the role of the cell wall in the phenomenon of copper tolerance in Silene paradoxa L. Environ Exp Bot 72(1):77–8310.1016/j.envexpbot.2010.02.006

    Article  CAS  Google Scholar 

  102. Salt DE, Kato N, Krämer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton

    Google Scholar 

  103. Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997) Internal detoxification mechanism of Al in hydrangea. Identification of Al form in the leaves. Plant Physiol 113:1033–1039

    PubMed  CAS  Google Scholar 

  104. Wainwright SJ, Woolhouse HW (1977) Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth: cell elongation and membrane damage. J Exp Bot 28:1029–1036

    Article  CAS  Google Scholar 

  105. Quartacci M, Cosi E, Navari-Izzo F (2001) Lipids and NAPDH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    Article  PubMed  CAS  Google Scholar 

  106. Fodor A, Szabó-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147:87–92

    CAS  Google Scholar 

  107. Meharg AA (1993) The role of the plasmalemma in metal tolerance in angiosperms. Physiol Plant 88:191–198

    Article  CAS  Google Scholar 

  108. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  109. Silver S (1996) Bacterial resistance to toxic metal ions. Gene 179:9–19

    Article  PubMed  CAS  Google Scholar 

  110. Meharg AA, Macnair MR (1992) Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus L. Heredity 69:336–341

    Article  CAS  Google Scholar 

  111. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  PubMed  CAS  Google Scholar 

  112. Gabbrielli R, Mattioni C, Vergnano O (1991) Accumulation mechanisms and heavy metal tolerance of a nickel hyper- accumulator. J Plant Nutr 14:1067–1080

    Article  CAS  Google Scholar 

  113. Clemens S (2001) Molecular mechanisms of metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  114. Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. Ii. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759

    Article  CAS  Google Scholar 

  115. Brooks RR, Shaw S, Marfil AA (1981) The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiol Plant 51:167–170

    Article  CAS  Google Scholar 

  116. Ernst WHO, Verkleiji JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 411:229–248

    Google Scholar 

  117. Aspinall D, Paleg LG (1981) Proline accumulation: physiological aspects. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic, Sydney

    Google Scholar 

  118. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatiblesolutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  119. Xu J, Yin HX, Li X (2009) Protective effects of proline against cadmium toxicityin micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28:325–333

    Article  PubMed  CAS  Google Scholar 

  120. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  121. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  122. Sharmila P, Saradhi P (1997) Stress induced proline accumulation in crop plants is not related to osmoregulation, Abstract No. 1667. Electronic Abstract Centre, American Society of Plant Biologists (ASPB), Rockville

    Google Scholar 

  123. Mali M, Aery NC (2009) Effects of silicon on growth, biochemical constituents and mineral nutrition of cowpea. Commun Soil Sci Plant Anal 40:1041–1052

    Article  CAS  Google Scholar 

  124. Saradhi A, Saradhi PP (1981) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    Google Scholar 

  125. Khalique S, Roy BK (2000) Genomic responses of higher plants to environmental stress. In: Iqbal M, Srivastava PS, Siddiqi TO (eds) Environmental hazards: plants and people. CBS Publishers and Distributors, New Delhi

    Google Scholar 

  126. Costa G, Spitz E (1997) Influence of cadmium on soluble carbohydrates, freeamino acids, protein content of in vitro cultured Lupinus albus. Plant Sci 128:131–140

    Article  CAS  Google Scholar 

  127. Hare PD, Cress WA (1997) Metabolic implications of stress - induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  128. Mehta SK, Gaur JP (1999) Heavy metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259

    Article  CAS  Google Scholar 

  129. Öncel I, Kele Y, Üstün AS (2000) Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ Pollut 107:315–320

    Article  PubMed  Google Scholar 

  130. Farago ME, Mullen WA (1979) Plants which accumulate metals. Part IV. A possible copper-proline complex from the roots of Armeria maritima. Inorg Chim Acta 32:93–94

    Article  Google Scholar 

  131. Wu JT, Hsieh MT, Kow LC (1998) Role of proline accumulation in response to toxic copper in Chlorella sp. (Chlorophyceae) cells. J Phycol 34:113–117

    Article  Google Scholar 

  132. Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plant 101:477–482

    Article  CAS  Google Scholar 

  133. Pugnaire FI, Endolz LS, Pardos J (1994) Constraints by water stress on plant growth. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker Inc, New York

    Google Scholar 

  134. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  PubMed  CAS  Google Scholar 

  135. Charest C, Phan CT (1990) Cold acclimation of wheat (Triticum aestivum) properties of enzymes involved in proline metabolism. Physiol Plant 80:159–168

    Article  CAS  Google Scholar 

  136. Barcelo J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Article  CAS  Google Scholar 

  137. Kastori R, Petrovic M, Petrovic N (1992) Effect of excess lead, cadmium, copper and zinc on water relations in sunflower. J Plant Nutr 15:2427–2439

    Article  CAS  Google Scholar 

  138. Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  CAS  Google Scholar 

  139. Persans MW, Yan X, Patnoe JM, Kramer U, Salt DE (1999) Molecular dissection of the role of histidine in Ni hyperaccumulation in Thlaspi goesingense. Plant Physiol 121:1117–1126

    Article  PubMed  CAS  Google Scholar 

  140. Pearce DA, Sherman F (1999) Toxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae. J Bacteriol 181:4774–4779

    PubMed  CAS  Google Scholar 

  141. Wycisk K, Kim EJ, Schroeder JI, Kramer U (2004) Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Lett 578:128–134

    Article  PubMed  CAS  Google Scholar 

  142. Tseng CK, Zhou MJ, Zou JZ (1993) Toxic phytoplankton studies in China. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam

    Google Scholar 

  143. Neumann D, zur Nieden U, Lichtenberger O, Leopold I (1995) How does Armeria maritima tolerate high heavy metal concentrations? J Plant Physiol 146:704–717

    CAS  Google Scholar 

  144. Lewis S, Handy RD, Cordi B, Billinhurst Z, Depledge MH (1999) Stress proteins (HSPÕs): methods of detection and their use as an environmental biomarker. Ecotoxicology 8:351–368

    Article  CAS  Google Scholar 

  145. Bhatia NP, Walsh KB, Baker AJM (2005) Detection and quantification of ligands involved in nickel detoxification in the herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot 56:1343–1349

    Article  PubMed  CAS  Google Scholar 

  146. Homer FA, Reeves RD, Brooks RR (1997) The possible involvement of amino acids in nickel chelation in some nickel accumulating plants. Curr Top Phytochem 14:31–33

    Google Scholar 

  147. White MC, Baker FD, Chaney RL, Decker AM (1981) Metal complexation in xylem fluid. 2. Theoretical equilibrium model and computational computer program. Plant Physiol 67:301–310

    Article  PubMed  CAS  Google Scholar 

  148. Harmens H, Den Hartog PR, Ten Bookum WM, Verkleij JAC (1993) Increased zinc tolerance in Silene vulgaris (Moench.) Garcke is not due to increased production of phytochelatins. Plant Physiol 103:1305–1309

    PubMed  CAS  Google Scholar 

  149. Weinstein LH, Kaur-Sawhney R, Rajam MV, Wettlaufer SH, Galston AW (1986) Cadmium-induced accumulation of putrescine in oat and bean leaves. Plant Physiol 82:641–645

    Article  PubMed  CAS  Google Scholar 

  150. Zhou XH, Minocha R, Minocha SC (1995) Physiological responses of suspension cultures of Catharanthus roseus to aluminium: changes in polyamines and inorganic ions. J Plant Physiol 145:277–284

    CAS  Google Scholar 

  151. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  152. Köhl K (1996) Population-specific traits and their implication for the evolution of a drought-adapted ecotype in Armeria maritima. Bot Acta 109:206–215

    Google Scholar 

  153. Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  PubMed  CAS  Google Scholar 

  154. Lane BG, Kajioka R, Kennedy TD (1987) The wheat germ Ec protein is azinc-containing metallothionein. Biochem Cell Biol 65:1001–1005

    Article  CAS  Google Scholar 

  155. Prasad MNV (1999) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  156. Freisinger E (2010) The metal-thiolate clusters of plantmetallothioneins. Chimia 64:217–224

    Article  PubMed  CAS  Google Scholar 

  157. Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155:1750–1751

    Article  PubMed  CAS  Google Scholar 

  158. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  159. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  PubMed  CAS  Google Scholar 

  160. Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41:553–575

    Article  CAS  Google Scholar 

  161. Kondo N, Wada-Nakagawa C, Hayashi Y (1984) Cadystin A and B, major unit peptides comprising cadmium-binding peptides induced in a fission yeast-separation: revision of structures and synthesis. Tetrahedron Lett 25:3869–3872

    Article  CAS  Google Scholar 

  162. Reese RN, Mehra RK, Tarbet EB, Winge DR (1988) Studies on the 7-glutamyl Cu-binding peptide from Schizosaccharomyces pombe J. Biol Chem 263:4186–4192

    CAS  Google Scholar 

  163. Jackson PJ, Unkefer CJ, Doolen JA, Watt K, Robinson NJ (1987) Poly(y-glutamylcysteinyl) glycine: its role in cadmium resistance in plant cells. Proc Natl Acad Sci USA 84:6619–6623

    Article  PubMed  CAS  Google Scholar 

  164. Reese RN, Wagner GJ (1987) Properties of tobacco (Nicotiana tabacum) cadmium-binding peptide(s). Unique non-metallothionein cadmium ligands. Biochem J 241:641–647

    PubMed  CAS  Google Scholar 

  165. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  PubMed  CAS  Google Scholar 

  166. Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    Article  PubMed  CAS  Google Scholar 

  167. Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cadl, mutants of Arabidopsis thaliana are phytochelatin-deficient. Plant Physiol 107:1059–1066

    Article  PubMed  CAS  Google Scholar 

  168. Haag-Kerwer A, Schafer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot 341:1827–1835

    Article  Google Scholar 

  169. Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H, Joho M (2000) Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiol 123:1029–1036

    Article  PubMed  CAS  Google Scholar 

  170. Vázquez S, Goldsbrough P, Carpena RO (2009) Comparative analysis of the contribution of phytochelatins to cadmium and arsenic tolerance in soybean and white lupin. Plant Physiol Biochem 47:63–67

    Article  PubMed  CAS  Google Scholar 

  171. Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963

    Article  PubMed  CAS  Google Scholar 

  172. Vogeli-Lange F, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-­binding peptides in tobacco. Implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093

    Article  PubMed  CAS  Google Scholar 

  173. De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  PubMed  Google Scholar 

  174. Schat H, Kalff MMA (1992) Are phytochelatins involved in differential heavy metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99:1475–1480

    Article  PubMed  CAS  Google Scholar 

  175. Schat H, Ten Bookum WM (1992) Genetic control of copper tolerance in Silene vulgaris. Heredity 68:219–229

    Article  CAS  Google Scholar 

  176. Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential senstivity. Plant. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  177. Xu W, Shi W, Yan F, Zhang B, Liang J (2011) Mechanisms of cadmium detoxification in cattail (Typha angustifolia L.). Aquat Bot 94:37–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Aery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Aery, N.C. (2012). Plant Defence Against Heavy Metal Stress. In: Mérillon, J., Ramawat, K. (eds) Plant Defence: Biological Control. Progress in Biological Control, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1933-0_10

Download citation

Publish with us

Policies and ethics