Skip to main content

Exact and Proper Quantization Rules and Langer Modification

  • Chapter
Book cover Wave Equations in Higher Dimensions

Abstract

A fundamental interest in quantum mechanics is to obtain the right result without invoking the full mathematics of the Schrödinger equation. Since last decade there has been a great revival of interest in semiclassical methods for obtaining approximate solutions to the Schrödinger equation. Among them, the WKB approximation and its generalization have attracted much attention to many authors since this method is proven to be useful in obtaining an approximate solution to the Schrödinger equation with solvable potentials. Considering the close connection between the WKB method and the exact and proper quantization rules, we first give a brief review of them and then establish the relation between the proper quantization rule, the Maslov index and the Langer modification. Note that the proper quantization rule possesses more symmetry than the original exact quantization rule and greatly simplifies those tedious and complicated integral calculations appearing in the original exact quantization rule. The symmetry and simplicity of the proper quantization rule come from its meaning—whenever the number of the nodes of the logarithmic derivative of wavefunction or the number of the nodes of the wavefunction increases by one, the momentum integral will increase by π. As illustrations we shall study a few solvable potentials via these quantization rules. It should be pointed out that the proper quantization rule can be used to solve all solvable potentials and ends the history of semiclassical quantization rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that the validity of the Ma-Xu formula follows from a Barclay’s result. He found that for these potentials the JWKB series can be resumed beyond the lowest-order giving an energy-independent correction which can be absorbed into the Maslov index and written in a closed analytical expression. Moreover, he showed equally that this result is directly correlated to the exactness of the lowest-order SJWKB quantization condition [374, 400]. The starting point is the definition of two classes of potentials, each characterized by a specific change of variable which brings the potential into a quadratic form. It is shown that this two classes coincide with the Barclay-Maxwell classes [401], which are based upon a functional characterization of superpotentials and which cover the whole set of translationally shape invariant potentials.

References

  1. ter Haar, D.: Problems in Quantum Mechanics, 3rd edn. Pion, London (1975)

    Google Scholar 

  2. Zeng, G.J., Su, K.L., Li, M.: Most general and simplest algebraic relationship between energy eigenstates of a hydrogen atom and a harmonic oscillator of arbitrary dimensions. Phys. Rev. A 50(5), 4373–4375 (1994)

    Article  ADS  Google Scholar 

  3. Chakrabarti, B., Das, T.K.: Quality of the supersymmetric WKB quantization condition for non-shape-invariant potentials. Phys. Rev. A 60, 104–111 (1999)

    Article  ADS  Google Scholar 

  4. Dunham, J.L.: The Wentzel-Brillouin-Kramers method of solving the wave equation. Phys. Rev. 41, 713–720 (1932)

    Article  ADS  MATH  Google Scholar 

  5. Krieger, J.B., Rosenzweig, C.: Application of a higher-order WKB approximation to radial problems. Phys. Rev. 164, 171–173 (1967)

    Article  ADS  Google Scholar 

  6. Yi, H.S., Lee, H.R., Sohn, K.S.: Semiclassical quantum theory and its applications in two dimensions by conformal mapping. Phys. Rev. A 49, 3277–3282 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  7. Morehead, J.J.: Asymptotics of radial wave equations. J. Math. Phys. 36, 5431 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Young, L.A., Uhlenbeck, G.E.: On the Wentzel-Brillouin-Kramers approximate solution of the wave equation. Phys. Rev. 36, 1154–1167 (1930)

    Article  ADS  Google Scholar 

  9. Langer, R.E.: On the connection formulas and the solutions of the wave equation. Phys. Rev. 51, 669–676 (1937)

    Article  ADS  MATH  Google Scholar 

  10. Hur, J., Lee, C.: Semiclassical theory for two-anyon system. Ann. Phys. 305, 28–44 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Beckel, C., Nakhleh, J.: Application of the second-order WBK approximation to radial problems. J. Chem. Phys. 39, 94 (1963)

    Article  ADS  Google Scholar 

  12. Adhikari, R., Dutt, R., Khare, A., Sukhatme, U.P.: Higher-order WKB approximations in supersymmetric quantum mechanics. Phys. Rev. A 38, 1679–1686 (1988)

    Article  ADS  Google Scholar 

  13. Moritz, M.J., Eltschka, C., Friedrich, H.: Threshold properties of attractive and repulsive 1/r 2 potentials. Phys. Rev. A 63, 042102 (2001)

    Article  ADS  Google Scholar 

  14. Friedrich, H., Trost, J.: Accurate WKB wavefunctions for weakly attractive inverse-square potentials. Phys. Rev. A 59, 1683–1686 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. Friedrich, H., Trost, J.: Phase loss in WKB waves due to reflection by a potential. Phys. Rev. Lett. 76, 4869–4873 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Friedrich, H., Trost, J.: Nonintegral Maslov indices. Phys. Rev. A 54, 1136–1145 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hainz, J., Grabert, H.: Centrifugal terms in the WKB approximation and semiclassical quantization of hydrogen. Phys. Rev. A 60, 1698–1701 (1999)

    Article  ADS  Google Scholar 

  18. Pack, R.T.: On improved WKB (uniform asymptotic) quantum conditions, Dunham corrections, the Langer modification, and RKR potentials. J. Chem. Phys. 57, 4612 (1972)

    Article  ADS  Google Scholar 

  19. Howard, R.A.: Effects of the Langer transformation on the calculation of internuclear potential curves. J. Chem. Phys. 54, 4252 (1971)

    Article  ADS  Google Scholar 

  20. Fröman, N., Fröman, P.O.: JWKB Approximation. North-Holland, Amsterdam (1965)

    MATH  Google Scholar 

  21. Ma, Z.Q., Xu, B.W.: Quantization rules for bound states of the Schrödinger equation. Int. J. Mod. Phys. E 14, 599 (2005)

    Article  ADS  Google Scholar 

  22. Ma, Z.Q., Xu, B.W.: Quantum correction in exact improved quantization rules. Europhys. Lett. 69, 685 (2005)

    Article  ADS  Google Scholar 

  23. Ma, Z.Q., Gonzalez-Cisneros, A., Xu, B.W., Dong, S.H.: Energy spectrum of the trigonometric Rosen-Morse potential using an improved quantization rule. Phys. Lett. A 371, 180–184 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Qiang, W.C., Dong, S.H.: Arbitrary l-state solutions of the rotating Morse potential through the exact quantization rule method. Phys. Lett. A 363, 169–176 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Cao, Z.Q., Liu, Q., Shen, Q.S., Dou, X.M., Chen, Y.L.: Quantization scheme for arbitrary one-dimensional potential wells. Phys. Rev. A 63, 054103 (2001)

    Article  ADS  Google Scholar 

  26. He, Y., Cao, Z.Q., Shen, Q.S.: Bound-state spectra for supersymmetric quantum mechanics. Phys. Lett. A 326, 315–321 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Ou, Y.C., Cao, Z.Q., Shen, Q.S.: Exact energy eigenvalues for spherically symmetrical three-dimensional potential. Phys. Lett. A 318, 36–39 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Ou, Y.C., Cao, Z.Q., Shen, Q.S.: Formally exact quantization condition for nonrelativistic quantum systems. J. Chem. Phys. 121, 8175 (2004)

    Article  ADS  Google Scholar 

  29. Qiang, W.C., Dong, S.H.: Proper quantization rule. Europhys. Lett. 89, 10003 (2010)

    Article  ADS  Google Scholar 

  30. Serrano, F.A., Gu, X.Y., Dong, S.H.: Qiang-Dong proper quantization rule and its applications to exactly solvable quantum systems. J. Math. Phys. 51, 082103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  31. Einstein, A.: Zum Quantensatz von Sommerfeld und Epstein. Verhand. Deut. Phys. Ges. 19, 82–92 (1917)

    Google Scholar 

  32. Brillouin, L.: Remarques sur la mécanique ondulatoire. J. Phys. Radium 7, 353–368 (1926)

    Article  Google Scholar 

  33. Keller, J.B.: Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems. Ann. Phys. 4, 180–188 (1958)

    Article  ADS  MATH  Google Scholar 

  34. Wentzel, G.: Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z. Phys. 38, 518–529 (1926)

    Article  ADS  Google Scholar 

  35. Kramers, H.A.: Wellenmechanik und halbzählige Quantisierung. Z. Phys. 39, 828–840 (1926)

    Article  ADS  Google Scholar 

  36. Brillouin, L.: La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives. C. R. Acad. Sci. 183, 24–26 (1926)

    Google Scholar 

  37. Maslov, V.P.: Théorie des perturbations et methods asymptotiques. Dunod/Gauthier-Villars, Paris (1972)

    Google Scholar 

  38. Curtis, L.J., Ellis, D.G.: Use of the Einstein-Brillouin-Keller action quantization. Am. J. Phys. 72, 1521 (2004)

    Article  ADS  Google Scholar 

  39. Brack, M., Bhaduri, R.K.: Semiclassical Physics. Addison-Wesley, Reading (1977)

    Google Scholar 

  40. Berry, M.V., Mount, K.E.: Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 35, 315 (1972)

    Article  ADS  Google Scholar 

  41. Seetharaman, M., Vasan, S.S.: Higher-order JWKB approximations for radial problems. I. Modification of the effective potential. J. Phys. A, Math. Gen. 17, 2485 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Hruška, M., Keung, W.Y., Sukhatme, U.: Accuracy of semiclassical methods for shape-invariant potentials. Phys. Rev. A 55, 3345–3350 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  43. Bhaduri, R.K., Sakhr, J., Sprung, D.W.L., Dutt, R., Suzuki, A.: Shape invariant potentials in SUSY quantum mechanics and periodic orbit theory. J. Phys. A, Math. Gen. 38, L183 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Bhaduri, R.K., Sprung, D.W.L., Suzuki, A.: When is the lowest order WKB quantization exact? Can. J. Phys. 84, 573–581 (2006)

    Article  ADS  Google Scholar 

  45. Leacock, R.A., Padgett, M.J.: Hamilton-Jacobi/action-angle quantum mechanics. Phys. Rev. D 28, 2491–2502 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  46. Ranjani, S.S., Geojo, K.G., Kapoor, A.K., Panigrahi, P.K.: Bound state wavefunctions through the quantum Hamilton-Jacobi formalism. Mod. Phys. Lett. A 19, 1457–1468 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Cooper, F., Khare, A., Sukhatme, U.: Supersymmetry in quantum mechanics. Phys. Rep. 251, 267–385 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  48. de Lange, O.L., Raab, R.E.: Operator Methods in Quantum Mechanics. Clarendon, Oxford (1991)

    Google Scholar 

  49. Dong, S.H., Gonzalez-Cisneros, A.: Energy spectra of the hyperbolic and second Pöschl-Teller like potentials solved by new exact quantization rule. Ann. Phys. 323, 1136–1149 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Shao, M.X., Mao, Y.Z., Zhang, D.T.: Geometric proof of exact quantization rules in one dimensional quantum mechanics. Int. J. Theor. Phys. 48, 36–42 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  51. Kasri, Y., Chetouani, L.: Application of the exact quantization rule for some noncentral separable potentials. Can. J. Phys. 86, 1083–1089 (2008)

    Article  ADS  Google Scholar 

  52. Qiang, W.C., Zhou, R.S., Gao, Y.: Application of the exact quantization rule to the relativistic solution of the rotational Morse potential with pseudospin symmetry. J. Phys. A, Math. Theor. 40, 1677 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Gu, X.Y., Dong, S.H.: The improved quantization rule and the Langer modification. Phys. Lett. A 372, 1972–1977 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  54. Bagrov, V.G., Gitman, D.M.: Exact Solutions of Relativistic Wave Equations. Kluwer Academic, Dordrecht (1990)

    MATH  Google Scholar 

  55. Gu, X.Y., Dong, S.H., Ma, Z.Q.: Energy spectra for modified Rosen-Morse potential solved by the exact quantization rule. J. Phys. A, Math. Theor. 42, 035303 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  56. Hartmann, H.: Die Bewegung eines Korpers in einem ringformigen Potentialfeld. Theor. Chim. Acta 24, 201–206 (1972)

    Article  Google Scholar 

  57. Hartmann, H., Schuck, R., Radtke, J.: Die diamagnetische Suszeptibilität eines nicht kugelsymmetrischen Systems. Theor. Chim. Acta 46, 1–3 (1976)

    Article  Google Scholar 

  58. Mandal, B.P.: Path integral solution to non-central potential. Int. J. Mod. Phys. A 15, 1225–1234 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  59. Gönül, B., Zorba, İ.: Supersymmetric solutions of non-central potentials. Phys. Lett. A 269, 83–88 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Rosen, N., Morse, P.M.: On the vibrations of polyatomic molecules. Phys. Rev. 42, 210–217 (1932)

    Article  ADS  MATH  Google Scholar 

  61. Manning, M.F., Rosen, N.: Minutes of the Middletown meeting, October 14. Phys. Rev. 44, 951–954 (1933)

    Article  Google Scholar 

  62. Qiang, W.C., Dong, S.H.: Analytical approximations to the solutions of the Manning-Rosen potential with centrifugal term. Phys. Lett. A 368, 13–17 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Ikhdair, S.M., Sever, R.: Approximate l-state solutions of the D-dimensional Schrödinger equation for Manning-Rosen potential. Ann. Phys. (Berlin) 17, 897–910 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  64. Comtet, A., Bandrauk, A.D., Campbell, D.K.: Exactness of semiclassical bound state energies for supersymmetric quantum mechanics. Phys. Lett. B 150, 159–162 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  65. Popov, V.S., Karnakov, B.M., Mur, V.D.: On matching conditions in the WKB method. Phys. Lett. A 210, 402–408 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  66. Watson, J.K.G.: Semiclassical quantization and the Langer modification. J. Chem. Phys. 90, 6443 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  67. Curtis, L.J.: Classical mnemonic approach for obtaining hydrogenic expectation values of r P. Phys. Rev. A 43, 568–569 (1991)

    Article  ADS  Google Scholar 

  68. Curtis, L.J.: Atomic Spectra and Lifetimes: A Conceptual Approach. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  69. Ranjani, S.S., Kapoor, A.K., Panigrahi, P.K.: Bound states and band structure-unified treatment through the quantum Hamilton-Jacobi approach. Ann. Phys. 320, 164–174 (2005)

    Article  ADS  MATH  Google Scholar 

  70. Geojo, K.G., Sree Ranjani, S., Kapoor, A.K.: A study of quasi-exactly solvable models within the quantum Hamilton-Jacobi formalism. J. Phys. A, Math. Gen. 36, 4591 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  71. Ikhdair, S.M., Sever, R.: Any l-state solutions of the Woods-Saxon potential in arbitrary dimensions within the new improved quantization rule. Int. J. Mod. Phys. A 25, 3941–3952 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  72. Yin, C., Cao, Z.Q., Shen, Q.S.: Why SWKB approximation is exact for all SIPs. Ann. Phys. (N.Y.) 325, 528–534 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  73. Comtet, A., Bandrauk, A.D., Campbell, D.K.: Exactness of semiclassical bound state energies for supersymmetric quantum mechanics. Phys. Lett. B 150, 159–162 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  74. Barclaya, D.T., Maxwell, C.J.: Shape invariance and the SWKB series. Phys. Lett. A 157, 357–360 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  75. Barclaya, D.T.: Convergent WKB series. Phys. Lett. A 185, 169–173 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  76. Grandatia, Y., Bérard, A.: Ma-Xu quantization rule and exact JWKB condition for translationally shape invariant potentials. Phys. Lett. A 375, 390–395 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  77. Bhaduri, R.K., Sakhr, J., Sprung, D.W.L., Dutt, R., Suzuki, A.: Shape invariant potentials in SUSY quantum mechanics and periodic orbit theory. J. Phys. A, Math. Gen. 38, L183 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). Exact and Proper Quantization Rules and Langer Modification. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_11

Download citation

Publish with us

Policies and ethics