Skip to main content

Generalized Hypervirial Theorem

  • Chapter
Wave Equations in Higher Dimensions
  • 1472 Accesses

Abstract

There has been a long history of attempts to calculate the matrix elements and the recurrence relations among them for some important wavefunctions such as the Coulomb-like potential, harmonic oscillator, Kratzer oscillator and others because of their wide applications. It should be pointed out that almost all contributions appearing in the literature have been made in three dimensions. In this Chapter, we first present a generalized second hypervirial formula in dimensions D and then obtain the general Blanchard’s and Kramers’ recurrence relations. After that, we shall apply them to obtain the corresponding Blanchard’s and Kramers’ recurrence relations for those certain central potentials such as the Coulomb-like potentials, the harmonic oscillator, Kratzer oscillator and the Morse potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worth addressing that the “Coulomb-like” potential in almost all contributions mentioned above and others [326, 327] has the form 1/r. Even though the real Coulomb-like potential in two dimensions is taken as a logarithmic form \(\ln r\), its exact solutions have not been obtained except for the approximate solutions [328].

References

  1. Flügge, S.: Practical Quantum Mechanics. Springer, Berlin (1971)

    Google Scholar 

  2. Louck, J.D., Shaffer, W.H.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part I. The twofold degenerate oscillator. J. Mol. Spectrosc. 4, 285–297 (1960)

    Article  ADS  Google Scholar 

  3. Louck, J.D.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part II. The n-fold degenerate oscillator. J. Mol. Spectrosc. 4, 298–333 (1960)

    Article  ADS  Google Scholar 

  4. Louck, J.D.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part III. Radial integrals. J. Mol. Spectrosc. 4, 334–341 (1960)

    Article  ADS  Google Scholar 

  5. Chatterjee, A.: Large-N expansions in quantum mechanics. Phys. Rep. 186, 249–370 (1990)

    Article  ADS  Google Scholar 

  6. Waller, I.: Der Starkeffekt zweiter Ordnung bei Wasserstoff und die Rydbergkorrektion der Spektra von He und Li+. Z. Phys. 38, 635–646 (1926)

    Article  ADS  Google Scholar 

  7. Van Vleck, J.H.: A new method of calculating the mean value of 1/r s for Keplerian systems in quantum mechanics. Proc. R. Soc. Lond. A 143, 679–681 (1934)

    Article  ADS  MATH  Google Scholar 

  8. Pasternack, S.: On the mean value of r S for Keplerian systems. Proc. Natl. Acad. Sci. USA 23, 91–94 (1937). Erratum in Proc. Natl. Acad. Sci. USA 23, 250

    Article  ADS  Google Scholar 

  9. Pasternack, S., Sternheimer, R.M.: An orthogonality property of hydrogenlike radial functions. J. Math. Phys. 3, 1280 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  10. Armstrong Jr., L.: Group properties of hydrogenic radial functions. Phys. Rev. A 3, 1546–1550 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ding, Y.B.: On the Schrödinger radial ladder operator. J. Phys. A, Math. Gen. 20, 6293 (1987)

    Article  ADS  Google Scholar 

  12. Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms. Academic Press, New York (1957)

    MATH  Google Scholar 

  13. Blanchard, P.: A new recurrence relation for hydrogenic radial matrix elements. J. Phys. B, At. Mol. Phys. 7, 993 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bockasten, K.: Mean values of powers of the radius for hydrogenic electron orbits. Phys. Rev. A 9, 1087–1089 (1974)

    Article  ADS  Google Scholar 

  15. Hughes, D.E.: Recurrence relations for radial matrix elements obtained from hypervirial relations. J. Phys. B, At. Mol. Phys. 10, 3167 (1977)

    Article  ADS  Google Scholar 

  16. Drake, G.W.F., Swainson, R.A.: Expectation values of r P for arbitrary hydrogenic states. Phys. Rev. A 42, 1123 (1990)

    Article  ADS  Google Scholar 

  17. Drake, G.W.F., Swainson, R.A.: Erratum: Expectation values of r P for arbitrary hydrogenic states. Phys. Rev. A 43, 6432–6432 (1991)

    Article  ADS  Google Scholar 

  18. Swainson, R.A., Drake, G.W.F.: An alternative proof of some relations between hydrogenic matrix elements. J. Phys. B, At. Mol. Opt. Phys. 23, 1079 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ojha, P.C., Crothers, D.S.: On a simple relation between hydrogenic radial matrix elements. J. Phys. B, At. Mol. Phys. 17, 4797 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. Shertzer, J.: Evaluation of matrix elements 〈n,lr βn,l′〉 for arbitrary β. Phys. Rev. A 44, 2832–2835 (1991)

    Article  ADS  Google Scholar 

  21. Moreno, B., Piñeiro, A.L., Tipping, R.H.: Algebraic solution for the hydrogenic radial Schrödinger equation: matrix elements for arbitrary powers of several r-dependent operators. J. Phys. A, Math. Gen. 24, 385 (1991)

    Article  ADS  MATH  Google Scholar 

  22. Qiang, W.C., Dong, S.H.: An alternative approach to calculating the mean values of \(\bar{r^{k}}\) for hydrogen-like atoms. Phys. Scr. 70, 276–279 (2004)

    Article  ADS  MATH  Google Scholar 

  23. Kramers, H.A.: Quantum Mechanics. North-Holland, Amsterdam (1957). Sect. 59

    MATH  Google Scholar 

  24. Sánchea, M.L., Moreno, B., López Piñeiro, A.: Matrix-element calculations for hydrogenlike atoms. Phys. Rev. A 46, 6908–6913 (1992)

    Article  ADS  Google Scholar 

  25. Morales, J., Peña, J.J., Portillo, P., Ovando, G., Gaftoi, V.: Generalization of the Blanchard’s rule. Int. J. Quant. Chem. 65, 205–211 (1997)

    Article  Google Scholar 

  26. López-Bonilla, J.L., Morales, J., Rosales, M.A.: Hypervirial theorem and matrix elements for the Coulomb potential. Int. J. Quant. Chem. 53(1), 3–7 (1995)

    Article  Google Scholar 

  27. Núñez-Yépez, H.N., López-Bonilla, J.L., Salas-Brito, A.L.: Generalized hypervirial and recurrence relations for hydrogenic matrix elements. J. Phys. B, At. Mol. Opt. Phys. 28, L525 (1995)

    Article  Google Scholar 

  28. Martínez-y-Romero, R.P., Núñez-Yépez, H.N., Salas-Brito, A.L.: Relativistically extended Blanchard recurrence relation for hydrogenic matrix elements. J. Phys. B, At. Mol. Opt. Phys. 34, 1261 (2001)

    Article  ADS  Google Scholar 

  29. Martínez-y-Romero, R.P., Núñez-Yépez, H.N., Salas-Brito, A.L.: A useful form of the recurrence relation between relativistic atomic matrix elements of radial powers. J. Phys. B, At. Mol. Opt. Phys. 35, L71 (2002)

    Article  ADS  Google Scholar 

  30. Dong, S.H., Chen, C.Y., Lozada-Cassou, M.: Some recurrence relations among the radial matrix elements for the relativistic hydrogenic atoms. Phys. Lett. A 333, 193–203 (2004)

    Article  ADS  MATH  Google Scholar 

  31. Basida, A., Zúñiga, J., Alacid, A., Requena, A., Hidalgo, A.: Two-center matrix elements for Kratzer oscillators. J. Chem. Phys. 93, 3408 (1990)

    Article  ADS  Google Scholar 

  32. Morales, J.: Generalized recurrence relation for the calculation of two-center matrix elements. Phys. Rev. A 36, 4101–4103 (1987)

    Article  ADS  Google Scholar 

  33. Alves, N.A., Drigo Filho, E.: The factorisation method and supersymmetry. J. Phys. A, Math. Gen. 21, 3215 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  34. Yang, X.L., Guo, S.H., Chan, F.T., Wong, K.W., Ching, W.Y.: Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory. Phys. Rev. A 43, 1186–1196 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  35. Guo, S.H., Yang, X.L., Chan, F.T., Wong, K.W., Ching, W.Y.: Analytic solution of a two-dimensional hydrogen atom. II. Relativistic theory. Phys. Rev. A 43, 1197–1205 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  36. Müller-Kirsten, H.J.W., Bose, S.K.: Solution of the wave equation for the logarithmic potential with application to particle spectroscopy. J. Math. Phys. 20, 2471 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  37. Huffaker, J.N., Dwivedi, P.H.: Diatomic molecules as perturbed Morse oscillators. IV. Franck-Condon factors for very high J. J. Chem. Phys. 68, 1303 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). Generalized Hypervirial Theorem. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_10

Download citation

Publish with us

Policies and ethics