Skip to main content

Research Advances in Bioremediation of Soils and Groundwater Using Plant-Based Systems: A Case for Enlarging and Updating Information and Knowledge in Environmental Pollution Management in Developing Countries

  • Chapter
  • First Online:
Book cover Biomanagement of Metal-Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

Soil and groundwater are important components of agricultural and renewable natural resource (RNR) production systems. These components and production systems are influenced directly and/or indirectly by anthropogenic activities. Many of these activities have series of impacts, the negative ones being through the generation and deposition of xenobiotics that are dangerous to life forms, onto and/or into the soil and groundwater. Although, it may be difficult and/or expensive to remove these toxic substances from the environment in most countries, most especially the developing ones and particularly those in sub-Saharan Africa (SSA) using the available remediation technologies, owing to different levels of economic constraints and/or quality of research. The documented researches have shown that the growth and physiological characteristics of certain species of plants can be applied in cheap, adoptable, and adaptable ways, for removing toxic substances from the environment through processes collectively known as bioremediation. Bioremediation has been identified as a feasible choice for removing the noxious substances. These production systems are central to livelihoods and survival in many developing countries, SSA in particular. The remediation technologies can be used for cleaning up the environment, soil, and groundwater, in ways that is expected to benefit the present and future environmental and socio-economic conditions of users. The present review is focused on the use of various methods of plant-assisted bioremediation processes for soil and groundwater remediation, in many parts of the world, for the benefit of and its adoption/adaptation in the developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681

    CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in the terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New York, p 866

    Google Scholar 

  • Aitken MD, Heck PE (1998) Turnover capacity of coprinus cinereus peroxidase for phenol and monosubstituted phenols. Biotechnol Prog 14:487–492

    CAS  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Biores Technol 79:273–276

    CAS  Google Scholar 

  • Angle JS, Chaney RL, Baker AJM, Li Y, Reeves R, Volk V, Roseberg R, Brewer E, Burke S, Nelkin J (2001) Developing commercial phytoextraction technologies: practical considerations. S Afr J Sci 97:619–623

    CAS  Google Scholar 

  • Arvin E, Godsy EM, Grbic-Galic D, Jensen B (1988) Microbial degradation of oil and creosote related aromatic compounds under aerobic and anaerobic conditions. In: International conference on physicochemical and biological detoxification of hazardous waste, Technomic, Lancaster, PA, pp 828–847

    Google Scholar 

  • Ayotamuno JM, Kogbara RB (2007) Determining the tolerance level of Zea mays (maize) to a crude oil polluted agricultural soil. Afr J Biotechnol 6:1332–1337

    CAS  Google Scholar 

  • Baker AJM, Whiting SM (2002) In search for the holy grail- another step in understanding metal hyperaccumulation? New Phytol 155:1–7

    Google Scholar 

  • Banks D, Younger PL, Arnesen RT, Iversen ER, Banks S (1997) Mine-water chemistry: the good, the bad, and the ugly. Environ Geol 32:157–174

    Google Scholar 

  • Bauer R, Fallmann H (1997) The photo–Fenton oxidation – a cheap and efficient wastewater treatment method. Res Chem Intermed 23:341

    CAS  Google Scholar 

  • Boominathan R, Saha-Chaudhury NM, Sahajwalla V, Doran PM (2004) Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnol Bioengg 86:243–250

    CAS  Google Scholar 

  • Bożyk P (2006) Newly industrialized countries. In: Globalization and the transformation of foreign economic policy. Ashgate Publishing, Ltd, Aldershot, UK, ISBN 0-75-464638-6

    Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationship between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci 13:495–504

    CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker JM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium-contaminated soil. J Environ Qual 23:1151–1157

    CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    CAS  Google Scholar 

  • Burken JG, Schnoor JL (1999) Distribution and volatilization of organic contaminants following uptake by hybrid poplar trees. Int J Phytoremed 1:139–152

    CAS  Google Scholar 

  • Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant Metabolism of explosives and nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds.) Biodegradation of nitroaromatic compounds and explosives. Lewis, Washington, DC, pp 239–275

    Google Scholar 

  • Carman E, Crossman T, Gatliff E (1998) Phytoremediation of No. 2 fuel-oil contaminated soil. J Soil Contam 7:455–466

    CAS  Google Scholar 

  • CFA (2005) Our common interest. A report of the Commission for Africa, Commission for Africa, London, p 461

    Google Scholar 

  • Chaney R, Li Y, Angle S, Baker A, Reeves R, Brown S, Homer F, Malik M, Chin M (2000) Improving metal hyperaccumulator wild plants to develop phytoextraction systems: approaches and progress. In: Terry N, Banuelos G (eds.) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 129–158

    Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    CAS  Google Scholar 

  • Claus D, Dietze H, Gerth A, Grossser W, Hedner A (2007) Application of agronomic practice improves phytoextraction on a multipolluted site. J Environ Engg Landscape Manage 15:208–212

    Google Scholar 

  • Cooke MT (1999) Phytoremediation: using plants to remediate groundwater contaminated with trichloroethylene (TCE). Pennsylvania State University, State College

    Google Scholar 

  • Davis LC, Muralidharan N, Visser VP et al (1994) Alfalfa plants and associated microorganisms promote biodegradation rather than volatilization of organic-substances from ground-water. ACS Symp Ser 563:112–122

    CAS  Google Scholar 

  • Davis LC, Banks ML, Schwab AP, Muralidharan N, Erickson LE, Tracy JC (1996) Plant based bioremediation. In: Sikdar I (ed.) Bioremediation. Technomics, Basel

    Google Scholar 

  • Dec J, Bollag JM (1994) Use of plant-material for the decontamination of water polluted with phenols. Biotechnol Bioengg 44:1132–1139

    CAS  Google Scholar 

  • Dey BK, Hashim MA, Hasan S, Gupta BS (2004) Microfiltration of water-based paint effluents. Adv Environ Res 8:455–466

    CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    CAS  Google Scholar 

  • Donnelly P, Hegde R, Fletcher J (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:981–988

    Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    CAS  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    CAS  Google Scholar 

  • Dushenkov S, Kapulnik Y (2002) Phytofilttration of metals. In: Raskin I, Ensley BD (eds.) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 89–106

    Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    CAS  Google Scholar 

  • Dushenkov S, Kapulnik Y, Blaylock M, Sorochisky B, Raskin I, Ensley B (1997a) Phytoremediation: a novel approach to an old problem. In: Wise DL (ed.) Global environmental biotechnology. Elsevier Science B.V, Amsterdam, pp 563–572

    Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997b) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474

    CAS  Google Scholar 

  • Ehsan M, Santamaría-Delgado K, Vázquez-Alarcón A, Alderete-Chavez A, De la Cruz-Landero N, Jaén-Contreras D, Molumeli PA (2009) Phytostabilization of cadmium contaminated soils by Lupinus uncinatus Schldl. Span J Agric Res 7:390–397

    Google Scholar 

  • Ensley BD (2000) Rational use for phytoremediation. In: Raskin I, Ensley BD (eds.) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley., New York, pp 3–12

    Google Scholar 

  • Erakhrumen AA (2007a) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2:151–156

    Google Scholar 

  • Erakhrumen AA (2007b) State of forestry research and education in Nigeria and Sub-Saharan Africa: implications for sustained capacity building and renewable natural resources development. J Sustain Dev Afr 9:133–151

    Google Scholar 

  • Erakhrumen AA (2008) Environment as a common property in the context of historical and contemporary anthropogenic activities: Influence on climate change, effects, and mitigation/adaptation strategies. In: Popoola L (ed.) Climate change and sustainable renewable natural resources management, Proceedings of the 32nd annual conference of the forestry association of Nigeria held in Umuahia, Abia State, Nigeria, 20–24 Oct 2008, pp 135–151

    Google Scholar 

  • Ernst WHO (2000) Evolution of metal hyperaccumulation and the phytoremediation hype. New Phytol 146:357–58

    Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes – options and impossibilities. Chem Erde 65:29–42

    CAS  Google Scholar 

  • Feigelson L, Muszkat L, Bir L, Muszkat KA (2000) Dye photo-enhancement of TiO2-photocatalyzed degradation of organic pollutants: the organobromine herbicide bromacil. Water Sci Technol 42:275

    CAS  Google Scholar 

  • Florence TM, Batley GE (1980) Chemical speciation in natural waters. CRC Anal Chem 9:219–296

    CAS  Google Scholar 

  • Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones EW, Rennels D, Wolfet NL (2000) Phytodegradation of p, p’ – DDT and the enantiomers of o, p’ – DDT. Environ Sci Technol 34:1663–1670

    CAS  Google Scholar 

  • Ghassemzadeh F, Yousefzadeh H, Arbab-Zavar MH (2008) Removing arsenic and antimony by Phragmites australis: rhizofiltration technology. J Appl Sci 8:1668–1675

    CAS  Google Scholar 

  • Glass DJ (1999) US and international markets for phytoremediation, 1999–2000. D. Glass Associates, Needham, 270 pp

    Google Scholar 

  • Glass DJ (2000) Economic potential of phytoremediation. In: Raskin I, Ensley BD (eds.) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 15–31

    Google Scholar 

  • Gogate PR (2002) Cavitation: an auxiliary technique in wastewater treatment schemes. Adv Environ Res 6:335

    CAS  Google Scholar 

  • Gogate PR, Pandit AB (2004a) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

    CAS  Google Scholar 

  • Gogate PR, Pandit AB (2004b) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8:553–597

    CAS  Google Scholar 

  • Gogoi BK, Dutta NN, Goswami P, Krishna Mohan TR (2003) A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Adv Environ Res 7:767–782

    CAS  Google Scholar 

  • Gosh M, Singh SP (2005) Comparative uptake and phytoextraction study of soil induced chromium by accumulator and high biomass weed species. Appl Ecol Environ Res 3:67–69

    Google Scholar 

  • Grêman H, Vodnik D, Velikonja-Bolta Š, Leštan D (2003) Heavy metals in the environment. J Environ Qual 32:500–506

    Google Scholar 

  • Guillén MF (2003) Multinationals, ideology, and organized labor. The limits of convergence. Princeton University Press, Princeton, New Jersey, US, ISBN 0-69-111633-4

    Google Scholar 

  • Guo Y, Marschner H (1995) Uptake, distribution and binding of cadmium and nickel in different plant species. J Plant Nutr 18:2691–2706

    CAS  Google Scholar 

  • Gussarsson M (1994) Cadmium-induced alterations in nutrient composition and growth of Betula pendula seedlings: the significance of fine roots as a primary target for cadmium toxicity. J Plant Nutr 17:2151–2156

    CAS  Google Scholar 

  • Hafez N, Abdalla S, Ramadan YS (1998) Accumulation of phenol by Potamogeton crispus from aqueous industrial waste. Bull Environ Contam Toxicol 60:944–948

    CAS  Google Scholar 

  • Heck RM, Farrauto RJ (1995) Catalytic air pollution control: commercial technology. Wiley, New York

    Google Scholar 

  • Holmes G, Singh BR, Theodore L (1993) Handbook of environmental management and technology. Wiley, New York, pp 229–264

    Google Scholar 

  • Hong MS, Farmayan WF et al (2001) Phytoremediation of MTBE from a groundwater plume. Environ Sci Technol 35:1231–1239

    CAS  Google Scholar 

  • Husain Q, Jan U (2000) Detoxification of phenols and aromatic amines from polluted wastewater by using phenol oxidases. J Sci Ind Res 59:286–293

    CAS  Google Scholar 

  • Hutchinson SL, Schwab AP, Banks MK (2003) Biodegradation of petroleum hydrocarbons in the rhizosphere. In: McCutcheon SC, Schnoor JL (eds.) Phytoremediation: transformation and control of contaminants. Wiley-Interscience, Hoboken, pp 355–386

    Google Scholar 

  • IMF (2010) How does the world economic outlook categorize advanced versus emerging and developing economies? International Monetary Fund. http://www.imf.org/external/pubs/ft/weo/faq.htm#q4b

  • ITTO (2010) Good Neighbours. Promoting intra-African markets for timber products. International tropical timber organization technical series number 35, p 112

    Google Scholar 

  • Jiang W, Liu D, Hou W (2000) Hyper-accumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Biores Technol 76:9–13

    Google Scholar 

  • Jones SA, Lee RW, Kuniansky EL (1999) Phytoremediation of Trichloroethylene (TCE) using Cottonwood Trees. In: Leeson A, Alleman BC (eds.) Phytoremediation and Innovative Strategies for Specialized Remedial Applications. The Fifth International In Situ and On-Site Bioremediation Symposium, April 19–22, 1999, vol 6. Battelle Press, San Diego, pp 101–108

    Google Scholar 

  • Kamaludeen SPBK, Arunkumar KR, Avudainayagam S, Ramasamy K (2003) bioremediation of chromium contaminated environments. Ind J Exp Biol 41:972–985

    CAS  Google Scholar 

  • Khilji S, Bareen F (2008) Rhizofiltration of heavy metals from the tannery sludge by the anchored hydrophyte, hydrocotyle umbellata L. Afr J Biotechnol 7:3711–3717

    CAS  Google Scholar 

  • King C (2006) Soil. In: Microsoft® student 2007 [DVD]. Microsoft Corporation, Redmond, WA

    Google Scholar 

  • Krupa Z, Moniak M (1998) The stage of leaf maturity implicates the response of the photosynthetic apparatus to cadmium toxicity. Plant Sci 138:149–156

    CAS  Google Scholar 

  • Lee E, Banks MK (1993) Bioremediation of petroleum contaminated soil using vegetation: a microbial study. J Environ Sci Health A28:2187–2198

    CAS  Google Scholar 

  • Lee M, Yang M, Chang Y (2007) Rhizofiltration to remove uranium from groundwater by using Phaseolus vulgaris var. Humilis, Brassica juncea (L.) Czern., and Helianthus annuus L. Geol Soc Am Abstr Programs 39(6):61

    Google Scholar 

  • Li YM, Chaney R, Brewer E, Rosenberg R, Angle SJ, Baker AJM, Reeves RD, Nelkin J (2003) Development of technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    CAS  Google Scholar 

  • Licht LA, Schnoor JL (1993) Tree buffers protect shallow ground water at contaminated sites. EPA ground water currents, office of solid waste and emergency response. EPA/542/N-93/011

    Google Scholar 

  • Lin Z, Puls RW (2003) Potential indicators for the assessment of arsenic natural attenuation in the subsurface. Adv Environ Res 7:825–834

    CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    CAS  Google Scholar 

  • Mackova M, Macek T, Ocenaskova J, Burkhard J, Demnerova K, Pazlarova J (1997) Biodegradation of polychlorinated biphenyls by plant cells. Int Biodeter Biodegrad 39:317–325

    CAS  Google Scholar 

  • Mackova M, Macek T, Kucerova P, Burkhard J, Trisk J, Demnerova K (1998) Plant tissue cultures in model studies of transformation of polychlorinated biphenyls. Chem Pap 52:599–600

    CAS  Google Scholar 

  • Mankiw NG (2007) Principles of economics, 4th edn. Thompson & South-Western, New York. ISBN 0-32-422472-9

    Google Scholar 

  • Mantzavinos D, Hellenbrand R, Livingston AG, Metcalfe IS (1997) Reaction mechanisms and kinetics of chemical pre-treatment of bio-resistant organic molecules by wet air oxidation. Water Sci Technol 35:119

    CAS  Google Scholar 

  • Marash-Whitman D (2006) Heavy metal trafficking: rhizofiltration efficacy of Elodea canadensis in copper contaminated effluents. http://www.usc.edu/CSSF/History/2006/Projects/S0810.pdf

  • Mason TJ (2000) Large scale sonochemical processing: aspiration and actuality. Ultrason Sonochem 7:145

    CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (eds.) (2003) Phytoremediation: transformation and control of contaminants. Wiley-interscience, Hoboken

    Google Scholar 

  • McFarlane JC, Pfleeger T, Fletcher J (1987) Transpiration effect on the uptake and distribution of bromacil, nitrobenzene, and phenol in soybean plants. J Environ Qual 16:372–376

    CAS  Google Scholar 

  • McGrath S, Zhao F, Lombi E (2002) Phytoremediation of metals, metalloids and radionuclides. Adv Agron 75:1–56

    CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elements and organic pollutants. Curr Opin Plant Biol 3:153–162

    CAS  Google Scholar 

  • Microsoft Encarta (2006) Groundwater. In: Microsoft® Student 2007 [DVD]. Microsoft Corporation, Redmond, WA

    Google Scholar 

  • Miya RK, Firestone MK (2000) Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass. J Environ Qual 29:584–592

    CAS  Google Scholar 

  • Monni S, Salemaa M, Milar N (2000) The Tolerance of Empetrum nigrum to copper and nickel. Environ Poll 109:221–229

    CAS  Google Scholar 

  • Neumann D, Zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    CAS  Google Scholar 

  • Newman LA, Strand SE, Choe N et al (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    CAS  Google Scholar 

  • Öncel I, Kele Y, Üstün AS (2000) Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ Poll 107:315–320

    Google Scholar 

  • Otal E, Mantzavinos D, Delgado MV, Hellenbrand R, Lebrato J, Metcalfe IS et al (1997) Integrated wet air oxidation and biological treatment of polyethylene glycol-containing wastewaters. J Chem Tech Biotech 70:147

    CAS  Google Scholar 

  • Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium- and copper-induced changes in tomato membrane lipid. Phytochemistry 45:1343–1350

    CAS  Google Scholar 

  • Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Carrillo G (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa). Bull Environ Contam Toxicol 66:727–734

    CAS  Google Scholar 

  • Peralta-Videa JR, de la Rosa G, Gonzalez JH, Gardea-Torresdey JL (2004) Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Adv Environ Res 8:679–685

    CAS  Google Scholar 

  • Petrisor IG, Dobrota S, Komitsas K, Lazar I, Kuperberg JM, Serban M (2004) Artificial inoculation-perspectives in tailings phytostabilization. Int J Phytorem 6:1–15

    CAS  Google Scholar 

  • Pierzynski GM, Schnoor JL, Youngman A, Licht L, Erickson LE (2002) Poplar trees for phytostabilization of abandoned zinc-lead smelter. Pract Periodical Haz Tox Radioactive Waste Mgmt 6:177–183

    CAS  Google Scholar 

  • Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    CAS  Google Scholar 

  • Pletsch M, de Araujo BS, Charlwood BV (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17:679–687

    CAS  Google Scholar 

  • Polprasert C, Dan NP, Thayalakumaran N (1996) Application of constructed wetlands to treat some toxic wastewaters under tropical conditions. Water Sci Technol 34:165–171

    CAS  Google Scholar 

  • Poon CPC (1986) Removal of Cd (II) from wastewaters. In: Mislin H, Raverva O (eds.) Cadmium in the environment. Birkha User, Basel, pp 6–55

    Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHS in soil at MGP sites. J Soil Contam 7:467–480

    CAS  Google Scholar 

  • Prasad MNV (2007) Sunflower (Helianthus annuus L.) – a potential crop for environmental industry. HELIA 30:167–174

    Google Scholar 

  • Rajakaruna N, Tompkins KM, Pavicevic PG (2006) Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Cey J Sci Bio Sci 35:25–39

    Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci 93:3164–3166

    CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of Toxic Metals. Using plants to clean up the environment. Wiley, New York, 304pp

    Google Scholar 

  • Rasmussen G, Olsen RA (2004) Sorption and biological removal of creosote-contaminants from groundwater in soil/sand vegetated with orchard grass (Dactylis glomerata). Adv Environ Res 8:313–327

    CAS  Google Scholar 

  • Richardson ML, Gangolli S (1992) The dictionary of substances and their effects. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Robinson BH, Fernandez JE, Madejon P, Maranon P, Murillo JM, Green S, Clothier B (2003a) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125

    CAS  Google Scholar 

  • Robinson BH, Green S, Mills T, Clothier B, Velde M, Laplane R, Fung L, Deurer M, Hurst S, Thayalakumaran T, Dijssel C (2003b) Phytoremediation: using plants as biopumps to improve degraded environments. Aust J Soil Res 41:599–611

    Google Scholar 

  • Rock SA (1997) The Standard handbook of hazardous waste treatment and disposal. In: Freeman H (ed.) Phytoremediation, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) Link. Chemosphere 40:855–859

    CAS  Google Scholar 

  • Rugh CL (2004) Genetically engineered phytoremediation: one man’s trash is another man’s transgene. Trends Biotechnol 22:496–468

    CAS  Google Scholar 

  • Russell-Jones R (1987) The Health effects of vehicle emissions. IMECHE conference on vehicle emissions and their impact on European air quality. Paper C355/87, pp 55–59

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the green liver concept. Pharmacogenetics 4:225–241

    CAS  Google Scholar 

  • Sayer JA, Palmer JR (1994) Overview on forest research in Africa. CIFOR working paper No. 1, Sep, 1994. Center for International Forestry Research. Invited paper for the international symposium supporting capacity building in forestry research in Africa AAS/IFS in collaboration with FAO, Nairobi, Kenya, 28 June–1 July 1994, p 19

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:A318–A323

    Google Scholar 

  • Schwab AP, Banks MK (1994) Bioremediation through rhizosphere technology. American chemical society, (ACS) symposium series 563. In: Anderson TA, Coats JR (eds.) Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. American Chemical Society, Washington, DC, pp 132–141

    Google Scholar 

  • Schwartz C, Gérard E, Perronnet JK, Morel JL (2001) Measurement of in-situ phytoextraction of zinc by spontaneous metallophytes growing on a former smelter site. Sci Total Environ 279:215–221

    CAS  Google Scholar 

  • Schwitzguébel J-P (2000) Potential of phytoremediation, an emerging green technology. In: Ecosystem service and sustainable watershed management in North China, proceedings of the international conference, Beijing, P.R. China, 23–25 Aug 2000

    Google Scholar 

  • Shimp JF, Tracy JC, Davis LC, Lee E, Huang W, Ericknon LE, Schnoor JL (1993) Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit Rev Environ Sci Technol 23:41–77

    CAS  Google Scholar 

  • Sims JL, Sims RC, Mathews JE (1990) Approach to bioremediation of contaminated soil. Hazard Waste Hazard Mater 7:117–145

    CAS  Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135

    CAS  Google Scholar 

  • Skladney GJ, Metting FB (1993) Bioremediation of contaminated Soil. In: Metting FB Jr (ed.) Soil microbial ecology. Marcel-Dekker, New York, pp 483–510

    Google Scholar 

  • Skorzynska-Polit E, Baszynski T (1997) Differences in sensitivity of the photosynthetic apparatus in cd-stressed runner bean plants in relation to their age. Plant Sci 128:11–21

    CAS  Google Scholar 

  • Subramanian M, Oliver DO, Shanks JV (2006) TNT Phytotransformation pathway characteristics in arabidopsis: role of aromatic hydroxylamines. Biotechnol Program 22:208–216

    CAS  Google Scholar 

  • Sullivan A, Sheffrin SM (2003) Economics: principles in action. Pearson Prentice Hall, Upper Saddle River, 471 pp. ISBN 0-13-063085-3

    Google Scholar 

  • Tomé FV, Rodríguez PB, Lozano JC (2008) Elimination of natural uranium and (226)Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:351–357

    Google Scholar 

  • Tsao DT (2003) Phytoremediation. advances in biochemical engineering biotechnology 78. Springer, Berlin, 206pp

    Google Scholar 

  • Tukendorf A, Skorzynska-Polit E, Baszynski T (1997) Homophytochelatin accumulation in cd-treated runner bean plants in related to their growth stage. Plant Sci 129:21–28

    CAS  Google Scholar 

  • UN (2009) World Urbanization Prospects: the 2007 revision population database by United Nations. www.esa.un.org/unup/index.asp

  • UN (2010a) Composition of macro geographical (Continental) regions, geographical sub-regions, and selected economic and other groupings. United Nations Statistics Division. Revised 1 Apr 2010. http://unstats.un.org/unsd/methods/m49/m49regin.htm#ftnc

  • UN (2010b) Standard country or area codes for statistical use: standard country or area codes and geographical regions for statistical use. United Nations Statistics Division. http://unstats.un.org/unsd/methods/m49/m49.htm

  • Vazquez S, Agha A, Granado A, Sarro MJ, Esteban E, Peñalosa JM, Carpena RO (2006) Use of white lupin plant for phytostabilization of Cd and as polluted acid soil. Water Air Soil Pollut 177:349–365

    CAS  Google Scholar 

  • Verma P, George KV, Singh HV, Singh SK, Juwarkar A, Singh RN (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Mod Assess 11:387–394

    Google Scholar 

  • Vojtechová M, Leblová S (1991) Uptake of lead and cadmium by maize seedlings and the effect of heavy metals on the activity of phosphoenolpyruvate carboxylase isolated from maize. Biol Plant 33:386–394

    Google Scholar 

  • Waldemar M, Baszynski T (1996) Different susceptibility of runner bean plants to excess of copper as a function of the growth stage of primary leaves. J Plant Physiol 149:217–221

    Google Scholar 

  • Wang X, Newman L, Gordon M, Strand S (1999) Biodegradation of carbon tetrachloride by poplar trees: results from cell culture and field experiments. In: Leeson A, Alleman BC (eds.) Phytoremediation and innovative strategies for specialized remedial applications. Battelle Press, Columbus, pp 133–138

    Google Scholar 

  • Watkins JW, Sorensen DL, Sims RC (1994) Volatilization and mineralization of naphthalene in soil–grass microcosms, Chapter 11. ACS symposium series 563. American Chemical Society, Washington, DC, pp 123–131

    Google Scholar 

  • Waugh D (2000) Manufacturing industries (Chapter 19), World development (Chapter 22). Geography, an integrated approach, 3rd edn. Nelson Thornes Ltd., UK, pp 563, 576–579, 633, 640, ISBN 0-17-444706-X

    Google Scholar 

  • Weiersbye IM (2007) Global review and cost comparison of conventional and phyto-technologies for mine closure. Plenary paper. In: Fourie AB, Tibbett M, Wiertz J (eds.) Mine closure 2007 – proceedings of the 2nd international seminar, Santiago, Chile. Australian Centre for Geomechanics and the University of Western Australia, Perth, ISBN 978-0-9804 185-0-7, pp 13–31

    Google Scholar 

  • Widdowson MA, Shearer S et al (2005) Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees. Environ Sci Technol 39:1598–1605

    CAS  Google Scholar 

  • Wikipedia (2010a) Developing country. Wikipedia: the free online encyclopaedia. http://en.wikipedia.org/wiki/Developing_country

  • Wikipedia (2010b) Third world. Wikipedia: the free online encyclopaedia. http://en.wikipedia.org/wiki/Third_World

  • World Bank (2001) World development report 200/2001. Attacking poverty. Oxford University Press, Oxford

    Google Scholar 

  • World Bank (2010a) Country classifications. http://data.worldbank.org/about/country-classifications

  • World Bank (2010b) Population projection tables by country and group. Online database. www.worldbank.org

  • Wu C, Khang SJ, Keener TC, Lee SK (2004) A Model for dry sodium bicarbonate duct injection flue gas desulfurization. Adv Environ Res 8:655–666

    CAS  Google Scholar 

  • Ximenez-Embun P, Rodriguez-Sanz B, Madridalbarran Y, Camara C (2002) Uptake of heavy metals by lupin plants in artificially contaminated sand: preliminary results. Int J Environ Anal Chem 82:805–813

    CAS  Google Scholar 

  • Xiong ZT (1998) Lead uptake and effects on seed germination and plant growth in a Pb Hyperaccumulator Brassica pekinensis Rupr. Bull Environ Contam Toxicol 60:285–291

    CAS  Google Scholar 

  • Yabe MJS, de Oliveira E (2003) Heavy metals removal in industrial effluents by sequential adsorbent treatment. Adv Environ Res 7:263–272

    Google Scholar 

  • Yang M, Chang Y, Kim J, Shin J, Lee M (2008) Study of the rhizofiltration by using Phaseolus vulgaris var., Brassica juncea (L.) Czern., Helianthus annuus L. to remove cesium from groundwater. Geochim Cosmochim Acta 72:A1056

    Google Scholar 

  • Yateem A, Balba MT, El-Nawawy AS, Al-Awadhi N (1999) Experiments in phytoremediation of gulf war contaminated soil. Soil Groundwater Cleanup 2:31–33

    Google Scholar 

  • Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    CAS  Google Scholar 

  • Zornoza P, Vazquez S, Esteban E, Fernandezpascual M, Carpena R (2002) Cadmium stress in nodulated white lupin. Strategies to avoid toxicity. Plant Physiol Biochem 40:1003–1009

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Agbontalor Erakhrumen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Erakhrumen, A.A. (2011). Research Advances in Bioremediation of Soils and Groundwater Using Plant-Based Systems: A Case for Enlarging and Updating Information and Knowledge in Environmental Pollution Management in Developing Countries. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_6

Download citation

Publish with us

Policies and ethics