Skip to main content

Importance of Arbuscular Mycorrhizal Fungi in Phytoremediation of Heavy Metal Contaminated Soils

  • Chapter
  • First Online:
Biomanagement of Metal-Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

Heavy metal contamination caused either by natural processes or by human activities is one of the most serious environmental problems. Physicochemical methods such as soil washing, excavation, and reburial for heavy metal removal from contaminated soils are expensive and disruptive. Phytoremediation in contrast is a low-cost environmentally friendly and potentially effective technology for the reclamation of polluted soils. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. They are critical in the establishment and fitness of plants in severely disturbed sites, including those contaminated by heavy metals. Mycorrhizal plants play an important role both in phytostabilization and phytoextraction. Strategies used by AM-fungi in phytostabilization includes immobilization of metals by precipitating polyphosphate granules in the soil, compounds secreted by the fungus, adsorption to fungal cell walls, and chelation of metals inside the fungus. By phytoextraction, AM-fungi make heavy metals more available for plant absorption, help plants to accumulate metals, facilitate plant growth and biomass production, and increase plant tolerance to metals. Since tolerance to heavy metals varies with the fungal genotype, efficacy of the hyperaccumulators in phytoremediation can be best exploited by selecting most suitable mycorrhizal culture. The importance of AM-fungi in enhancing phytoremediation of metal-contaminated soil is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano-Anaya ML, Salvador-Figueroa M, Ocampo JA, Garcia-Romera I (2006) Hydrolytic enzyme activities in maize (Zea mays) and sorghum (Sorghum bicolor) roots inoculated with Gluconacetobacter diazotrophicus and Glomus intraradices. Soil Biol Biochem 38:879–886

    CAS  Google Scholar 

  • Al-Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese Brake Fern (Pteris vittata L.). J Environ Qual 34:2181–2186

    CAS  Google Scholar 

  • Amir H, Perrier N, Rigault F, Jaffre T (2007) Relationships between Ni- hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils. Plant Soil 293:23–35

    CAS  Google Scholar 

  • Azcón R, Perálvarez MC, Biró B, Roldán A, Ruíz-Lozano JM (2009) Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Appl Soil Ecol 41:168–177

    Google Scholar 

  • Barrutia O, Garbisu C, Hernández-Allica J, García-Plazaola JI, Becerril JM (2010) Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ Pollut 158:1710–1715

    CAS  Google Scholar 

  • Barto K, Friese C, Cipollini D (2010) Arbuscular mycorrhizal fungi protect a native plant from allelopathic effects of an invader. J Chem Ecol 36:351–360

    CAS  Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496

    CAS  Google Scholar 

  • Bedini S, Turrini A, Rigo C, Argese E, Giovannetti M (2010) Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biol Biochem 42:758–765

    CAS  Google Scholar 

  • Biro I, Nemeth T, Takacs T (2009) Changes of parameters of infectivity and efficiency of different Glomus mosseae arbuscular mycorrhizal fungi strains in cadmium-loaded soils. Comm Soil Sci Plant Anal 40:227–239

    CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Google Scholar 

  • Chao CC, Wang YP (1990) Effects of heavy-metals on the infection of vesicular–arbuscular mycorrhizae and the growth of maize. J Agric Assoc China 152:34–45

    Google Scholar 

  • Chen BD, Christie P, Li XL (2001) A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42:185–192

    CAS  Google Scholar 

  • Chen BD, Liu Y, Shen H, Li XL, Christie P (2004) Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Mycorrhiza, 14: 347–354

    Google Scholar 

  • Chen X, Wu C, Tang J, Hu S (2005) Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60:665–671

    CAS  Google Scholar 

  • Chen BD, Xiao XY, Zhu YG, Smith FA, Xie ZM, Smith SE (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ 379:226–234

    CAS  Google Scholar 

  • Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res Int 10:192–198

    CAS  Google Scholar 

  • Cho Y, Bolick JA, Butcher DJ (2009) Phytoremediation of lead with green onions (Allium fistulosum) and uptake of arsenic compounds by moonlight ferns (Pteris cretica cv Mayii). Microchem J 91:6–8

    CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant growth promoting rhizobacteria. J Hazard Mat 177:323–330

    CAS  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    CAS  Google Scholar 

  • Diaz G, Azconaguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241–249

    CAS  Google Scholar 

  • Dong Y, Zhu YG, Smith FA, Wang YS, Chen BD (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut 155:174–181

    CAS  Google Scholar 

  • Dong X, Li C, Li J, Wang J, Liu S, Ye B (2010) A novel approach for soil contamination assessment from heavy metal pollution: a linkage between discharge and adsorption. J Hazard Mater 175:1022–1030

    CAS  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    CAS  Google Scholar 

  • Franco-Hernandez MO, Vasquez-Murrieta MS, Patino-Siciliano A, Dendooven L (2010) Heavy metals concentration in plants growing on mine tailings in central Mexico. Biores Technol 101:3864–3869

    CAS  Google Scholar 

  • Galli U, Schepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:364–368

    CAS  Google Scholar 

  • Gardea-Torresdey LJR, Peralta-Videab G, Rosaa DL, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem 249:1797–1810

    CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Google Scholar 

  • Gong X, Yao H, Zhang D, Qiao Y, Li L, Xu M (2010) Leaching characteristics of heavy metals in fly ash from a Chinese coal-fired power plant. Asia Pac J Chem Eng 5:330–336

    CAS  Google Scholar 

  • Gonzalez-Chavez C, Harris PJ, Dodd J, Meharg AA (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–171

    CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-González R, Wright SF and Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Poll 130:317–323

    Google Scholar 

  • Grcman H, Velikonja-Bolta Š, Vodnic D, Leštan D (2001) EDTA enhanced heavy metal phyto­extraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    CAS  Google Scholar 

  • Grcman H, Vodnik D, Velikonja-Bolta S, Lestan D (2003) Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32:500–506

    CAS  Google Scholar 

  • Gupta S, Satpati S, Nayek S, Garai D (2010) Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environ Monit Assess 165:169–177

    CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Holleman A, Wiberg E (1985) Lehrbuch der Anorganischen. Chemie, Berlin

    Google Scholar 

  • Hua J, Lin X, Yin R, Jiang Q, Shao Y (2009) Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J Environ Sci 21:1214–1220

    CAS  Google Scholar 

  • Hutchinson JJ, Young SD, Black CR, West HM (2004) Determining uptake of radio-labile soil cadmium by arbuscular mycorrhizal hyphae using isotopic dilution in a compartmented- pot system. New Phytol 164:477–484

    CAS  Google Scholar 

  • Jacquot-Plumey E, van Tuinen D, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V (2001) 25 S rDNA-based molecular monitoring of glomalean fungi in sewage sludge-treated field plots. Environ Microbiol 3:525–531

    CAS  Google Scholar 

  • Javaid A (2007) Allelopathic interactions in mycorrhizal associations. Allelopathy J 20:29–42

    Google Scholar 

  • Javaid A (2008) Allelopathy in mycorrhizal symbiosis in the Poaceae family. Allelopathy J 21:207–218

    Google Scholar 

  • Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plants. J Plant Nutr 32:1595–1618

    CAS  Google Scholar 

  • Javaid A, Bajwa R (1999) Allelopathy and VA mycorrhizaIV: tolerance to allelopathy by VA mycorrhiza in maize. Pak J Phytopathol 11:70–73

    Google Scholar 

  • Javaid A, Hafeez FY, Iqbal SH (1993) Interaction between vesicular arbuscular (VA) mycorrhiza and Rhizobium and their effect on biomass, noduation and nitrogen fixation in Vigna radiata (L.) Wilczek. Sci Int Lahore 5:395–396

    CAS  Google Scholar 

  • Javaid A, Iqbal SH, Hafeez FY (1994) Effect of different strains of Bradyrhizobium and two types of vesicular arbuscular mycorrhizae (VAM) on biomass and nitrogen fixation in Vigna radiata (L.) Wilczek var. NM 20–21. Sci Int Lahore 6:265–267

    Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    CAS  Google Scholar 

  • Joner EJ, Leyval C (1997) Uptake of Cd by roots and hypae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentration of cadmium. New Phytol 135:353–360

    CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    CAS  Google Scholar 

  • Kaldort M, Kuhn AJ, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Google Scholar 

  • Kapoor A, Virarghavan T (1995) Fungal biosorption – an alternative treatment option for heavy metal bearing wastewater: a review. Biores Technol 53:195–206

    CAS  Google Scholar 

  • Kaschuk G, Leffelaar PA, Giller KE, Alberton O, Hungria M, Kuyper TW (2010) Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbioses. Soil Biol Biochem 42:125–127

    CAS  Google Scholar 

  • Khade HW, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal-contaminated and non-contaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water Air Soil Poll 202:45–56

    CAS  Google Scholar 

  • Khalvati M, Bartha B, Dupigny A (2010) Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. J Soils Sediments 10:54–64

    CAS  Google Scholar 

  • Khaosaad T, García-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    CAS  Google Scholar 

  • Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Google Scholar 

  • Lanfranco L, Bianciotto V, Lumini E, Souza M, Morton JB, Bonfante P (2001) A combined morphological and molecular approach to characterize isolates of arbuscular mycorrhizal fungi in Gigaspora (Glomales). New Phytol 152:169–179

    CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in as-contaminated soils. Environ Pollut 139:1–8

    CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  • Liang CC, Li T, Xiao YP, Liu MJ, Zhang HB, Zhao ZW (2009) Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Int J Phytoremed 11:692–703

    CAS  Google Scholar 

  • Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in as spiked soil under glasshouse conditions. Environ Int 31:867–873

    CAS  Google Scholar 

  • Liu Y, Christie P, Zhang J, Li X (2009) Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus. Environ Exp Bot 66:435–441

    CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579–1579

    Google Scholar 

  • Manoharachary C, Kunwar IK, Tilak KVBR, Adholeya A (2010) Arbuscular mycorrhizal fungi-­taxonomy, diversity, conservation and multiplication. Proc Natl Acad Sci India B Biol Sci 80:1–13

    Google Scholar 

  • Mapanda F, Mangwayana EN, Myamangara J, Giller KE (2005) The effect of long term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agric Ecosyst Environ 107:151–165

    CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    CAS  Google Scholar 

  • Medina A, Vassilev N, Barea JM, Azcon R (2005) Application of Aspergillus niger-treated agro-waste residue and Glomus mosseae for improving growth and nutrition of Trifolium repens in a Cd- contaminated soil. J Biotechnol 116:369–378

    CAS  Google Scholar 

  • Meding SM, Zasoski RJ (2008) Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem 40:126–134

    CAS  Google Scholar 

  • Meharg AA (2004) Arsenic in rice – understanding a new disaster for South-East Asia. Trends Plant Sci 9:415–417

    CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments – an emerging remediation technology. Environ Health Perspect 116:278–283

    CAS  Google Scholar 

  • Mertz W (1981) The essential trace elements. Science 213:1332–1338

    CAS  Google Scholar 

  • Muchuweti M, Birkett JW, Chinyanga E, Zvauya R, Scrimshaw MD, Lester JN (2006) Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: implications for human health. Agric Ecosyst Environ 112:41–48

    CAS  Google Scholar 

  • Nichols K (2003) Characterization of glomalin – a glycoprotein produced by Arbuscular Mycorrhizal fungi. Ph.D. dissertation, University of Maryland, College Park

    Google Scholar 

  • O’Keefe DM, Sylvia DM (1991) Mechanisms of the vesicular-arbuscular mycorrhizal plant-growth response. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology. Marcel Dekker, New York, pp 35–53

    Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    CAS  Google Scholar 

  • Oyekanmi EO, Coyne DL, Fagade OE, Osonubi O (2007) Improving root-knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations. Crop Prot 26:1006–1012

    Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot 26:1682–1688

    Google Scholar 

  • Paradi I, Berecz B, Hala´ SZ K, Bratek Z (2003) Influence of arbuscular mycorrhiza and cadmium on the polyamine contents of Ri T-DNA transformed Daucus carota L. root cultures. Acta Biol Szegediensis 47:31–36

    Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    CAS  Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    CAS  Google Scholar 

  • Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy AS (2005) Phytoremediation and hyperaccumulator plants. In: Tamas M, Martionoia E(eds) Moleculor biology of metal homeostosis detoxification. Topics in current genetics, vol 14. Springer, Berlin, pp 299–340

    Google Scholar 

  • Petra K, Juan B, Bernal MP, Flavia N, Charlotte P, Stefan S, Rafael C, Carmela M (2009) Trace element behaviour at the root–soil interface. Implications in phytoremediation. Environ Exp Bot 67:243–259

    Google Scholar 

  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925

    CAS  Google Scholar 

  • Rai PK (2010) Phytoremediation of heavy metals in a tropical impoundment of industrial region. Environ Monit Assess 165:529–537

    CAS  Google Scholar 

  • Ray JG, Valsalakumar N (2010) Arbuscular mycorrhizal fungi and piriformospora indica individually and in combination with Rhizobium on greengram. J Plant Nutr 33:285–298

    CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance. New Phytol 157:475–492

    Google Scholar 

  • Redecker R, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil quality. Can J Soil Sci 84:355–363

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    CAS  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    CAS  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13:309–317

    Google Scholar 

  • Saini VK, Bhandari SC, Tarafdar JC (2004) Comparison of crop yield, soil microbial C, N and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. Field Crops Res 89:39–47

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    CAS  Google Scholar 

  • Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced ­oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  Google Scholar 

  • Shalaby M, Helmy HM, Kaindl R, Rahman HBA (2003) Genesis of the metamorphosed Um Zeriq Zn-Pb-As-Ag prospect, Sinai, Egypt. Proceedings of 7th Biennial SGA Meeting, Aug. 24–28, 2003 Athens Greece, “Mineral Exploration and Sustainable Development” Volumes 1 & 2. Millpress Science Publishers, Rotterdam, pp 15–18

    Google Scholar 

  • Sharda JN, Koide RT (2010) Exploring the role of root anatomy in P-mediated control of ­colonization by arbuscular mycorrhizal fungi. Bot Botanique 88:165–173

    CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshal F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotox Environ Safe 66:258–266

    CAS  Google Scholar 

  • Singh N, Ma LQ (2006) Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L. Environ Pollut 141:238–246

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    CAS  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Google Scholar 

  • Turnau K, Miszals Z, Trouvelot A, Bonfante P, Gianinazzi S (1996) Oxalis acetosella as monitoring plant on highly polluted soils. In: Azcon-Agiular C, Barea JM (eds) Mycorrhizas in integrated system: from genes to plant development. European commission, Luxembourg, pp 483–486

    Google Scholar 

  • Ultra VU, Tanaka S, Sakurai K, Iwasaki K (2007) Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere. Plant Soil 290:29–41

    CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    CAS  Google Scholar 

  • Wang ZH, Zhang JL, Christie P, Li XL (2008) Influence of inoculation with Glomus mosseae or Acaulospora morrowiae on arsenic uptake and translocation by maize. Plant Soil 311:235–244

    CAS  Google Scholar 

  • Webb SM, Gaillard JF, Ma LQ, Tu C (2003) XAS speciation of arsenic in a hyper-accumulating fern. Environ Sci Technol 37:754–760

    CAS  Google Scholar 

  • Weiersbye IM, Straker CJ, Przybylowicz WJ (1999) Micro-PIXE Mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings. Nucl Instrum Meth B 158:335–343

    CAS  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1995a) Bioavailability of heavy metals and arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biol Fertil Soils 19:22–28

    CAS  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1995b) Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a sewage sludge amended sandy soil. Soil Biol Biochem 27:287–296

    CAS  Google Scholar 

  • Whitfield L, Richards AJ, Rimmer DL (2004) Effects of mycorrhizal colonization on Thymus polytrichus from heavy-metal-contaminated sites in northern England. Mycorrhiza 14:47–54

    CAS  Google Scholar 

  • Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363–1378

    CAS  Google Scholar 

  • Wu FY, Ye ZH, Wong MH (2009) Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76:1258–1264

    CAS  Google Scholar 

  • Xavier IJ, Boyetchko SM (2002) Arbuscular mycorrhizal fungi as biostimulants and bioprotectants of crops. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology. vol 2: Agriculture and food production. Elsevier, Amsterdam

    Google Scholar 

  • Zaier H, Ghnaya T, Rejeb KB, Lakhdar A, Rejeb S, Jemal F (2010) Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Biores Technol 101:3978–3983

    CAS  Google Scholar 

  • Zak JC, Daneilson RM, Parkinson D (1982) Mycorrhizal fungal spore numbers and species occurrence in two amended mine spoils in Alberta, Canada. Mycologia 74:785–792

    Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants-A review. Gene 179:21–30

    CAS  Google Scholar 

  • Zhang ZH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935

    CAS  Google Scholar 

  • Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51:686–693

    CAS  Google Scholar 

  • Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut 154:169–171

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Javaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Javaid, A. (2011). Importance of Arbuscular Mycorrhizal Fungi in Phytoremediation of Heavy Metal Contaminated Soils. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_5

Download citation

Publish with us

Policies and ethics