Skip to main content

Metal–Plant Interactions: Toxicity and Tolerance

  • Chapter
  • First Online:
Biomanagement of Metal-Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

Plants are primarily exposed to metals through the soil from where they may be absorbed by root tissues and transported into the shoots. The presence of metals at toxic levels can elicit a wide range of visible and physiological symptoms in plants. In addition to deformation and discoloration of tissues, effects include inhibition of seed germination, decreased root and shoot growth, decreased rates of photosynthesis and transpiration, damage to proteins and membranes, nutrient imbalances, and altered enzyme activity. Some metals cause oxidative stress through their participation in reactions that produce reactive oxygen species. Oxidative stress results in a range of general effects including damage to membranes and a range of biomolecules. Other effects of metals include direct substitution in biomolecules and conformational changes in proteins and enzymes. Plants respond to toxicity by either producing metal-binding compounds such as phytochelatins, sequestering metals into specific tissues, or by addressing oxidative damage via the antioxidant system. Metal tolerance may be enhanced through systems already utilized by plants, including chelators, phytohormones, and relationships with soil microorganisms. This chapter outlines the plant uptake of metals and their effects, in addition to mechanisms by which plants tolerate high metal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (ed.) (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New York, p 867

    Google Scholar 

  • Ahsan N, Lee D-G, Lee S-H, Kang KY, Lee JJ, Kim PJ, Yoon H-S, Kim J-S, Lee B-H (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–1193

    CAS  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Alloway BJ (ed.) (1995) Heavy metals in soils. Blackie Academic & Professional, Glasgow, p 390

    Google Scholar 

  • Alloway BJ, Thornton I, Smart GA, Sherlock JC, Quinn MJ (1988) Metal availability. Sci Total Environ 75:41–69

    CAS  Google Scholar 

  • Andrade SAL, Silveira A, Jorge R, de Abreu M (2008) Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytoremediation 10:1–13

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  Google Scholar 

  • Appenroth K-J (2010) Definition of “heavy metals” and their role in biological systems. In: Sherameti I, Varma A (eds.) Soil heavy metals, vol 19. Springer, Berlin, pp 19–29

    Google Scholar 

  • Aroca R, Amodeo G, Fernandez-Illescas S, Herman EM, Chaumont F, Chrispeels MJ (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353

    CAS  Google Scholar 

  • Atici O, Agar G, Battal P (2003) Interaction between endogenous plant hormones and alpha-amylase in germinating chickpea seeds under cadmium exposure. Fresenius Environ Bull 12:781–785

    CAS  Google Scholar 

  • Atici O, Agar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222

    CAS  Google Scholar 

  • Aust SD, Morehouse LA, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Radic Biol Med 1:3–25

    CAS  Google Scholar 

  • Baker A (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Barcelo J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    CAS  Google Scholar 

  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709

    CAS  Google Scholar 

  • Baszynski T, Wajda L, Krol M, Wolinska D, Krupa Z, Tukendorf A (1980) Photosynthetic activities of cadmium-treated tomato plants. Physiol Plant 48:365–370

    CAS  Google Scholar 

  • Bell R, Labovitz ML, Sullivan DP (1985) Delay in leaf flush associated with a heavy metal-enriched soil. Econ Geol 80:1407

    CAS  Google Scholar 

  • Benzarti S, Mohri S, Ono Y (2008) Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa. Environ Toxicol 23:607–616

    CAS  Google Scholar 

  • Berthelin J, Munier-Lamy C, Leyval C (1995) Effect of microorganisms on mobility of heavy metals in soils. In: Huang PM, Berthelin J, Bollag JM, McGill WB, Page AL (eds.) Environmental impact of soil component interactions, vol 2. CRC Press, Boca Raton, pp 3–17

    Google Scholar 

  • Berti WR, Jacobs LW (1998) Distribution of trace elements in soil from repeated sewage sludge applications. J Environ Qual 27:1280

    CAS  Google Scholar 

  • Bhattacharjee S (1997) Membrane lipid peroxidation, free radical scavangers and ethylene evolution in Amaranthus as affected by lead and cadmium. Biol Plant 40:131–135

    CAS  Google Scholar 

  • Blanksby SJ, Bierbaum Veronica M, Ellison GB, Kato S (2007) Superoxide does react with peroxides: direct observation of the Haber-Weiss reaction in the gas phase. Angew Chem Int Ed 46:4948–4950

    CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    CAS  Google Scholar 

  • Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel J (2006) Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 63:811–817

    CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    CAS  Google Scholar 

  • Burton KW, Morgan E, Roig A (1984) The influence of heavy metals upon the growth of sitka-spruce in South Wales forests. Plant Soil 78:271–282

    CAS  Google Scholar 

  • Cajuste LJ, Carrillo RG, Cota EG, Laird RJ (1991) The distribution of metals from wastewater in the mexican valley of Mezquital. Water Air Soil Pollut 57:763–771

    Google Scholar 

  • Chaignon V, Bedin F, Hinsinger P (2002) Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and a calcareous soil. Plant Soil 243:219–228

    CAS  Google Scholar 

  • Chamseddine M, Wided BA, Guy H, Marie-Edith C, Fatma J (2009) Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regul 57:89–99

    CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds.) Land treatment of hazard wastes. Noyes Data Corp, Park Ridge, pp 50–76

    Google Scholar 

  • Chatterjee C, Sinha P, Dube BK, Gopal R (2006) Excess copper-induced oxidative damages and changes in radish physiology. Commun Soil Sci Plant Anal 37:2069–2076

    CAS  Google Scholar 

  • Choudhury S, Panda S (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium Nepalense (Schwaegr) Broth under chromium and lead phytotoxicity. Water Air Soil Pollut 167:73–90

    CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    CAS  Google Scholar 

  • Colbourn P, Thornton I (1978) Lead pollution in agricultural soils. J Soil Sci 29(4):513–526

    CAS  Google Scholar 

  • Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105:1081–1102

    CAS  Google Scholar 

  • Crowley D, Wang Y, Reid C, Szaniszlo P (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    CAS  Google Scholar 

  • Cutler DF, Botha T, Stevenson DW (2008) Plant anatomy: an applied approach. Blackwell Publishing, Oxford, p 312

    Google Scholar 

  • De Vos C, Bookum V, Vooijs R, Schat H, Dekok L (1993) Effect of copper on fatty acid composition and peroxidation of lipids in roots of copper tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31:151–158

    Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    CAS  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    CAS  Google Scholar 

  • Deng D, Deng J, Li J, Zhang J, Hu M, Lin Z, Liao B (2008) Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. J Integr Plant Biol 50:691–698

    CAS  Google Scholar 

  • Di Salvatore M, Carafa AM, Carratù G (2008) Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere 73:1461–1464

    Google Scholar 

  • Dietz K, Baier M, Kramer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV (ed.) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, p 73

    Google Scholar 

  • Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    CAS  Google Scholar 

  • Domingo JL (1994) Metal-induced developmental toxicity in mammals. J Toxicol Environ Health 42:123–141

    CAS  Google Scholar 

  • Dong J, FB Wu, GP Zhang (2005) Effect of cadmium on growth and photosynthesis of tomato seedlings. J Zhejiang Univ Sci 6B:974–980

    CAS  Google Scholar 

  • Dueck TA, Visser P, Ernst WHO, Schat H (1986) Vesicular-arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soil. Soil Biol Biochem 18:331–333

    Google Scholar 

  • Duffus JH (2002) “Heavy metals” – a meaningless term? Pure Appl Chem 74:793–807

    CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    CAS  Google Scholar 

  • El-Jaoual T, Cox DA (1998) Manganese toxicity in plants. J Plant Nutr 21:353–386

    CAS  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21(4):335–351

    Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167

    CAS  Google Scholar 

  • Fan TW, Lane AN, Pedler J, Crowley D, Higashi RM (1997) Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography-mass spectrometry. Anal Biochem 251:57–68

    CAS  Google Scholar 

  • Fergusson JE (1990) Heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford

    Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273

    Google Scholar 

  • Fodor E, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147:87–92

    CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plantarum 100:241–254

    CAS  Google Scholar 

  • Gadallah MAA, El-Enany AE (1999) Role of kinetin in alleviation of copper and zinc toxicity in Lupinus termis plants. Plant Growth Regul 29:151–160

    CAS  Google Scholar 

  • Geebelen W, Vangrosveld J, Adriano DC, Van Poucke LC, Clijsters H (2002) Effects of Pb–EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiol Plant 115:377–384

    CAS  Google Scholar 

  • Gray WM (2004) Hormonal regulation of plant growth and development. PLoS Biol 2:e311

    Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific g-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    CAS  Google Scholar 

  • Gunawardana WB, Singhal N, Johnson A (2010) Amendments and their combined application for enhanced copper, cadmium, lead uptake by Lolium perenne. Plant Soil 329:283–294

    CAS  Google Scholar 

  • Gupta M, Sinha S, Chandra P (1994) Uptake and toxicity of metals in Scirpus lacustris L. and Bacopa monnieri L. J Environ Sci Health A 29:2185–2202

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  Google Scholar 

  • Hao F, Wang X, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151–158

    CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    CAS  Google Scholar 

  • Hopkins BG, Whitney DA, Lamond RE, Jolley VD (1998) Phytosiderophore release by sorghum, wheat, and corn under zinc deficiency. J Plant Nutr 21:2623–2637

    CAS  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52(365):2245–2264

    Google Scholar 

  • Hossner LR, Loeppert RH, Newton RJ, Szaniszlo PJ, Attrep MJ (1998) Literature review: phytoaccumulation of chromium, uranium, and plutonium in plant systems. Amarillo National Resource Center for Plutonium, Amarillo

    Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995a) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    CAS  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CC (1995b) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073

    CAS  Google Scholar 

  • Israr M, Sahi SV (2008) Promising role of plant hormones in translocation of lead in Sesbania drummondii shoots. Environ Pollut 153:29–36

    CAS  Google Scholar 

  • Jabs T, Dietrich RA, Dang JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    CAS  Google Scholar 

  • Janicka-Russak M, Kabala K, Burzynski M, Klobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728

    CAS  Google Scholar 

  • Johnson FM (1998) The genetic effects of environmental lead. Mutat Res Rev Mut Res 410:123–140

    CAS  Google Scholar 

  • Johnson AC, Gunawardana WB, Singhal N (2009) Amendments for enhancing copper uptake by Brassica juncea and Lolium perenne from solution. Int J Phytoremediation 11:215–234

    CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). Int J Phytoremediation 10:31–46

    CAS  Google Scholar 

  • Karataglis SS (1980) Zinc and copper effects on metal-tolerant and non-tolerant clones of Agrostis tenuis (Poaceae). Plant Syst Evol 134:173–182

    CAS  Google Scholar 

  • Karataglis S (1987) Estimation of the toxicity of different metals, using as criterion the degree of root elongation in Triticum aestivum seedlings. Phyton 26:209–217

    CAS  Google Scholar 

  • Karhadkar AD, Kannan S (1984) Transport patterns of foliar and root absorbed copper in bean seedlings. J Plant Nutr Soil Sci 7:1443–1452

    CAS  Google Scholar 

  • Keeling SM, Stewart RB, Anderson CWN, Robinson BH (2003) Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation. Int J Phytoremediation 5:235–244

    CAS  Google Scholar 

  • Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    CAS  Google Scholar 

  • Kende H, Zeevaart JAD (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Knight B, Zhao FJ, McGrath SP, Shen ZG (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78

    CAS  Google Scholar 

  • Koppenol WH (2001) The Haber-Weiss cycle – 70 years later. Redox Rep 6:229–234

    CAS  Google Scholar 

  • Koppenol WH (2002) The Haber-Weiss cycle – 71 years later. Redox Rep 7:59–60

    CAS  Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Google Scholar 

  • Kramer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    CAS  Google Scholar 

  • Krznaric E, Verbruggen N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009) Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environ Pollut 157:1581–1588

    CAS  Google Scholar 

  • Kupper H, Gotz B, Mijovilovich A, Kupper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol 151:702–714

    Google Scholar 

  • Kusaka Y (1993) Occupational diseases caused by exposure to sensitizing metals. Sangyo Igaku 35:75

    CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    CAS  Google Scholar 

  • Lee C, Choi J, Pak C (1996) Micronutrient toxicity in seed geranium (Pelargonium x hortorum Baley). J Am Soc Hort Sci 121:77–82

    CAS  Google Scholar 

  • Leita L, Marchiol L, Martin M, Peressotti A, Vedove GD, Zerbi G (1995) Transpiration dynamics in cadmium-treated soybean (Glycine max L.) plants. J Agron Crop Sci 175:153–156

    CAS  Google Scholar 

  • Leopold I, Gunther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323–1328

    CAS  Google Scholar 

  • Lin SL, Wu L (1994) Effects of copper concentration on mineral nutrient uptake and copper accumulation in protein of copper tolerant and non-tolerant Lotus purshianus L. Ecotoxicol Environ Saf 29:214–228

    CAS  Google Scholar 

  • Liochev SI (1999) The mechanism of “Fenton-like” reactions and their importance for biological systems. A biologist’s view. Met Ions Biol Syst 36:1–39

    CAS  Google Scholar 

  • Liochev SI, Fridovich I (2002) The Haber-Weiss cycle – 70 years later: an alternative view. Redox Rep 7:55–57

    CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    CAS  Google Scholar 

  • Lopez ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL (2005) Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. Chemosphere 61:595–598

    CAS  Google Scholar 

  • Lopez ML, Peralta-Videa JR, Parsons JG, Gardea-Torresdey JL, Duarte-Gardea M (2009) Effect of indole-3-acetic acid, kinetin, and ethylenediaminetetraacetic acid on plant growth and uptake and translocation of lead, micronutrients, and macronutrients in alfalfa plants. Int J Phytoremediation 11:131–149

    CAS  Google Scholar 

  • Lorenz SE, Hamon RE, Holm PE, Domingues HC, Sequiera E, Christensen TH, McGrath SP (1997) Cadmium and zinc in plants and soil solutions from contaminated soils. Plant Soil 189:21–31

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Lyon GL, Brooks RR, Peterson PJ, Butler GW (1968) Trace elements in a New Zealand serpentine flora. Plant Soil 29:225–240

    CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 42:233–240

    CAS  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    CAS  Google Scholar 

  • Maksymiec W, Bednara J, Baszynski T (1995) Responses of runner bean plants to excess copper as a function of plant growth stages: effects on morphology and structure of primary leaves and their chloroplast ultrastructure. Photosynthetica 31:427–436

    CAS  Google Scholar 

  • Malaisse F, Grégoire J, Morrison RS, Brooks RR, Reeves RD (1979) Copper and cobalt in vegetation of Fungurume, Shaba Province, Zaïre. Oikos 33:472–478

    CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889

    Google Scholar 

  • Martin MH, Duncan EM, Coughtrey PJ (1982) The distribution of heavy metals in a contaminated woodland ecosystem. Environ Pollut B 3:147–157

    CAS  Google Scholar 

  • McKenna IM, Chaney RL, Williams FM (1993) The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environ Pollut 79:113–120

    CAS  Google Scholar 

  • Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    CAS  Google Scholar 

  • Merzlyak MN, Reshetnikova IV, Chivkunova OB, Ivanova DG, Maximova NI (1990) Hydrogen peroxide- and superoxide-dependent fatty acid breakdown in Phytophthora infestans zoospores. Plant Sci 72:207–212

    CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    CAS  Google Scholar 

  • Monni S, Uhlig C, Hansen E, Magel E (2001) Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environ Pollut 112:121–129

    CAS  Google Scholar 

  • Mosulén S, Domínguez MJ, Vigara J, Vílchez C, Guiraum A, Vega JM (2003) Metal toxicity in Chlamydomonas reinhardtii. Effect on sulfate and nitrate assimilation. Biomol Eng 20:199–203

    Google Scholar 

  • Muranyi A, Seeling B, Ladewig E, Jungk A (1994) Acidification in the rhizosphere of rape seedlings and in bulk soil by nitrification and ammonium uptake. Z Pflanzenernaehr Bodenkd 157:61–65

    CAS  Google Scholar 

  • Murch SJ, Haq K, Rupasinghe HPV, Saxena PK (2003) Nickel contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environ Exp Bot 49:251–257

    CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term heavy metals by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B 1(1):3–26

    Google Scholar 

  • Nimchuk Z, Eulgem T, Holt BFI, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609

    CAS  Google Scholar 

  • Nobel PS (2005) Physicochemical and environmental plant physiology. Elsevier Academic, San Diego, p 567

    Google Scholar 

  • Nolan AL, Lombi E, McLaughlin MJ (2003) Metal bioaccumulation and toxicity in soils-why bother with speciation? Aust J Chem 56:77–92

    CAS  Google Scholar 

  • Obata H, Inoue N, Umebayashi M (1996) Effect of Cd on plasma membrane ATPase from plant roots differing in tolerance to Cd. Soil Sci Plant Nutr 42:361–366

    CAS  Google Scholar 

  • Orcutt D, Nilsen E, Hale M (2000) The physiology of plants under stress: soil and biotic factors. Wiley, New York

    Google Scholar 

  • Ouzounidou G, Ciamporova M, Moustakas M, Karataglis S (1995) Responses of maize (Zea mays L.) plants to copper stress -I. Growth, mineral content and ultrastructure of roots. Environ Exp Bot 35:167–176

    CAS  Google Scholar 

  • Özyiğit İ, Akinci Ş (2009) Effects of some stress factors (aluminum, cadmium and drought) on stomata of Roman nettle (Urtica pilulifera L.). Not Bot Hort Agrobot Cluj 37:108–115

    Google Scholar 

  • Panda S, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Panda S, Chaudhury I, Khan M (2003) Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol Plant 46:289–294

    CAS  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    CAS  Google Scholar 

  • Patsikka E, Kairavuo M, Sersen F, Aro E-M, Tyystjarvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol 129:1359–1367

    CAS  Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL, Gomez E, Tiemann KJ, Parsons JG, Carrillo G (2002) Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ Pollut 119:291–301

    CAS  Google Scholar 

  • Peterson CA (1987) The exodermal Casparian band of onion roots blocks the apoplastic movement of sulphate ions. J Exp Bot 38(197):2068–2081

    Google Scholar 

  • Pichtel J, Kuroiwa K, Sawyerr HT (2000) Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environ Pollut 110:171–178

    CAS  Google Scholar 

  • Plassard F, Winiarski T, Petit-Ramel M (2000) Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. J Contam Hydrol 42:99–111

    CAS  Google Scholar 

  • Plette ACC, Nederlof MM, Temminghoff EJM, Van Riemsdijk WH (1999) Bioavailability of heavy metals in terrestrial and aquatic systems: a quantitative approach. Environ Toxicol Chem 18:1882–1890

    CAS  Google Scholar 

  • Podar D, Ramsey MH (2005) Effect of alkaline pH and associated Zn on the concentration and total uptake of Cd by lettuce: comparison with predictions from the CLEA model. Sci Total Environ 347:53–63

    CAS  Google Scholar 

  • Podar D, Ramsey MH, Hutchings MJ (2004) Effect of cadmium, zinc and substrate heterogeneity on yield, shoot metal concentration and metal uptake by Brassica juncea: Implications for human health risk assessment and phytoremediation. New Phytol 163:313–324

    CAS  Google Scholar 

  • Polette LA, Gardea-Torresdey JL, Chianelli RR, George GN, Pickering IJ, Arenas J (2000) XAS and microscopy studies of the uptake and bio-transformation of copper in Larrea tridentata (creosote bush). Microchem J 65:227–236

    CAS  Google Scholar 

  • Poulter A, Collin HA, Thurman DA, Hardwick K (1985) The role of the cell wall in the mechanism of lead and zinc tolerance in Anthoxanthum odoratum L. Plant Sci 42:61–66

    CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    CAS  Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants – biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Google Scholar 

  • Rai U, Tripathi R, Kumar N (1992) Bioaccumulation of chromium and toxicity on growth, photosynthetic pigments, photosynthesis, nitrate reductase activity and protein content in a chlorococcalean green alga Gaucocystis nostochinearum Itzigsohn. Chemosphere 25:1721–1732

    CAS  Google Scholar 

  • Ralph PJ, Burchett MD (1998) Photosynthetic response of Halophila ovalis to heavy metal stress. Environ Pollut 103:91–101

    CAS  Google Scholar 

  • Rand GM (1995) Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment. CRC Press, Boca Raton, p 1125

    Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    CAS  Google Scholar 

  • Rauser W (1995) Phytochelatins and related peptides structure, biosynthesis, and function. Plant Physiol 109:1141

    CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants; the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    CAS  Google Scholar 

  • Raven KP, Loeppert RH (1997) Trace element composition of fertilizers and soil amendments. J Environ Qual 26:551–557

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds.) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Reeves R, Brooks RR (1983) European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18:275–283

    CAS  Google Scholar 

  • Revitt DM, Ellis JB (1980) Rain water leachates of heavy metals in road surface sediments. Water Res 14:1403–1407

    CAS  Google Scholar 

  • Rio LA, Puppo A, Bolwell GP, Daudi A (2009) Reactive oxygen species in plant–pathogen interactions. In: Río LAd, Puppo A (eds.) Reactive oxygen species in plant signaling. Springer, Berlin, pp 113–133

    Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    CAS  Google Scholar 

  • Rocchetta I, Küpper H (2009) Chromium- and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy. New Phytol 182:405–420

    CAS  Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Biochem 42:899–906

    CAS  Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV, Singh SR, Sajwan KS (2006) Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environ Pollut 144:11–18

    CAS  Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology. Wadsworth, Belmont, p 682

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Google Scholar 

  • Sayed S (1997) Effect of cadmium and kinetin on transpiration rate, stomatal opening and leaf relative water content in safflower plants. J Islam Acad Sci 10:73–80

    Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  Google Scholar 

  • Sen A, Mondal N, Mandal S (1987) Studies of uptake and toxic effects of Cr(VI) on Pistia stratiotes. Water Sci Technol 19:119–127

    CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    CAS  Google Scholar 

  • Shainberg O, Rubin B, Rabinowitch HD, Tel-Or E (2001) Loading beans with sublethal levels of copper enhances conditioning to oxidative stress. J Plant Physiol 158:1415–1421

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    CAS  Google Scholar 

  • Sharma NC, Sahi SV, Jain JC (2005) Sesbania drummondii cell cultures: ICP-MS determination of the accumulation of Pb and Cu. Microchem J 81:163–169

    CAS  Google Scholar 

  • Shaw BP, Rout NP (1998) Age-dependent responses of Phaseolus aureus Roxb. to inorganic salts of mercury and cadmium. Acta Physiol Plant 20:85–90

    Google Scholar 

  • Shaw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. In: Prasad M (ed.) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, Berlin, pp 84–126

    Google Scholar 

  • Shenker M, Fan TWM, Crowley DE (2001) Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J Environ Qual 30:2091–2098

    CAS  Google Scholar 

  • Sirkar S, Amin JV (1974) The manganese toxicity of cotton. Plant Physiol 54(4):539–543

    Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Steudle E, Ranathunge K (2007) Apoplastic water transport in roots. In: Sattelmacher B, Horst WJ (eds.) The apoplast of higher plants: compartment of storage, transport and reactions. Springer, Berlin, pp 119–130

    Google Scholar 

  • Strange J, Macnair MR (1991) Evidence for a role for the cell membrane in copper tolerance of Mimulus guttatus Fischer ex DC. New Phytol 119:383–388

    CAS  Google Scholar 

  • Tripathi B, Mehta S, Amar A, Gaur J (2006) Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 62:538–544

    CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    CAS  Google Scholar 

  • Vajpayee P, Rai U, Ali M, Tripathi R, Yadav V, Sinha S, Singh S (2001) Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bull Environ Contam Toxicol 67:246–256

    CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Google Scholar 

  • Van Engelen DL, Sharpe-Pedler RC, Moorhead KK (2007) Effect of chelating agents and solubility of cadmium complexes on uptake from soil by Brassica juncea. Chemosphere 68:401–408

    Google Scholar 

  • Vassilev A, Lidon F, Scotti P, Da Graca M, Yordanov I (2004) Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol Plant 48:153–156

    CAS  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    CAS  Google Scholar 

  • Walley JW, Huerta AJ (2010) Exposure to environmentally relevant levels of cadmium primarily impacts transpiration in field-grown soybean. J Plant Nutr 33:1519–1530

    CAS  Google Scholar 

  • Wang H, Shan X-Q, Wen B, Zhang S, Wang Z-J (2004) Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commoelina communis. Arch Environ Contam Toxicol 47:185–192

    CAS  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commercialisation. Environ Sci Technol 31:182–186

    Google Scholar 

  • Weinstein J, Bielski BH (1979) Kinetics of the interaction of HO2 and O2-radicals with hydrogen peroxide. The Haber-Weiss reaction. J Am Chem Soc 101:58–62

    CAS  Google Scholar 

  • Wheeler DM, Power IL (1995) Comparison of plant uptake and plant toxicity of various ions in wheat. Plant Soil 172:167–173

    CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    CAS  Google Scholar 

  • Whiting SN, De Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144

    CAS  Google Scholar 

  • Wierzbicka M, Obidzinska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171

    CAS  Google Scholar 

  • Wong CSC, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142:1–16

    CAS  Google Scholar 

  • Wu SC, Luo YM, Cheung KC, Wong MH (2006) Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: a laboratory study. Environ Pollut 144:765–773

    CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    CAS  Google Scholar 

  • Yang H, Rose NL, Battarbee RW, Monteith D (2002a) Trace metal distribution in the sediments of the whole lake basin for Lochnagar, Scotland: a palaeolimnological assessment. Hydrobiologia 479:51–61

    CAS  Google Scholar 

  • Yang X, Long X, Ni W, Fu C (2002b) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    CAS  Google Scholar 

  • Yang HM, Zhang XY, Wang GX (2004) Effects of heavy metals on stomatal movements in broad bean leaves. Russ J Plant Physiol 51:464–468

    CAS  Google Scholar 

  • Zaccheo P, Genevini P, Cocucci S (1982) Chromium ions toxicity on the membrane transport mechanism in segments of maize seedling roots. J Plant Nutr 5:1217–1227

    CAS  Google Scholar 

  • Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849

    CAS  Google Scholar 

  • Zhang F, Römheld V, Marschner H (1991) Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat. Soil Sci Plant Nutr 37:671–678

    CAS  Google Scholar 

  • Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151:613–620

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Singhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Johnson, A., Singhal, N., Hashmatt, M. (2011). Metal–Plant Interactions: Toxicity and Tolerance. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_2

Download citation

Publish with us

Policies and ethics