Skip to main content

Mobility and Availability of Toxic Metals After Soil Washing with Chelating Agents

  • Chapter
  • First Online:
Biomanagement of Metal-Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

Remediation techniques for soils polluted with toxic metals can be divided into two main groups: immobilization and soil washing. Immobilization technologies leave metals in soil, but minimize their availability, while soil washing with chelating agents removes metals from soil. Metals in soil are not entirely accessible to chelating agents and, hence, not entirely removed. Residual metals left in the soil after remediation remain in chemically stable species bound to non-labile soil fractions and are considered nonmobile and non-bioavailable and thus nontoxic. However, with the reintroduction of remediated soil into the environment, the soil is exposed to various environmental factors, which could eventually promote or initiate the transition of the residual metals back to more labile forms to re-establish the disturbed equilibrium. Such a shift is likely to increase the toxicity of the residual metals and, consequently, decrease the final efficiency of soil remediation. Different extraction techniques are used to assess metals bioavailability and the efficiency of soil remediation. Reduced bioavailability of contaminants for organisms is most often assessed by established chemical extraction tests. However, do the chemical extraction tests really provide (include) reliable information on the availability of metals for soil fauna? In the present chapter, the effect of biotic and abiotic environmental factors on the mobility and availability of residual metals in soil after remediation is discussed. Furthermore, the benefits of in vivo assessment of soil remediation efficiency by terrestrial organisms is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abollino O, Giacomino A, Malandrino M, Mentasti E, Aceto M, Barberis R (2006) Assessment of metal availability in a contaminated soil by sequential extraction. Water Air Soil Pollut 137:315–338

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. Springer, New York

    Google Scholar 

  • Aldaya MM, Lors CL, Salmon S, Ponge JF (2006) Avoidance bio-assays may help to test the ecological significance of soil pollution. Environ Pollut 140:173–180

    CAS  Google Scholar 

  • Alvarenga P, Palma P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of tests to assess the quality of mine-contaminated soils. Environ Geochem Health 30:95–99

    CAS  Google Scholar 

  • Amorim MJB, Novais S, Römbke J, Soares AMVM (2008) Avoidance test with Enchytraeus albidus (Enchytraeidae): effects of different exposure time and soil properties. Environ Pollut 155:112–116

    CAS  Google Scholar 

  • Arnold RE, Hodson ME, Black S, Davies NA (2003) The influence of mineral solubility and soil solution concentration on the toxicity of copper to Eisenia fetida Savigny. Pedobiol 47:622–632

    CAS  Google Scholar 

  • Baker DE, Senft JP (1997) Copper. In: Alloway BJ (ed.) Heavy metals in soils, 2nd edn. Chapman & Hall, Suffolk, pp 179–205

    Google Scholar 

  • Basta NT, Tabatabai MA (1992) Effect of cropping systems on adsorption of metals by soils: II. Eff pH Soil Sci 153:195–204

    CAS  Google Scholar 

  • Bohlen PJ (2002) Earthworms. In: Lal R (ed.) Encyclopedia of soil science, 1st edn. Marcel Dekker, New York, pp 370–373

    Google Scholar 

  • Borona A, Romero F (1996) Fractionation of lead in soils and its influence on the extractive cleaning with EDTA. Environ Technol 17:63–70

    Google Scholar 

  • Bouché MB (1977) Stratégies lombriciennes. In: Lohm U, Persson T (eds.) Soil organisms as components of ecosystems. Ecol Bull 25:122–132

    Google Scholar 

  • Boyle KE, Curry JP, Farrell EP (1997) Influence of earthworms on soil properties and grass production in reclaimed cutover peat. Biol Fertil Soil 25:20–26

    Google Scholar 

  • Brun LA, Maillet J, Hinsinger P, Pépin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Pollut 111:293–302

    CAS  Google Scholar 

  • Cao X, Chen Y, Wang X, Deng X (2001) Effects of redox potential and pH value on the release of rare elements from soil. Chemosphere 44:655–661

    CAS  Google Scholar 

  • Chaney RL, Brown SL, Li YM, Angle JS, Stuczynski TI, Daniels WL, Henry CL, Siebielec G, Malik M, Ryan JA, Compton H (2000) Progress in risk assessment for soil metals, and in-situ remediation and phytoextraction of metals from hazardous contaminated soils (Paper presented at the US-EPA’s conference Phytoremediation). State of the Science, Boston

    Google Scholar 

  • Cheng J, Wong MH (2002) Effects of earthworms on Zn fractionation in soils. Biol Fertil Soil 36:72–78

    CAS  Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms – a review. Pedobiol 50:463–477

    Google Scholar 

  • Davis S, Mirick DK (2006) Soil ingestion in children and adults in the same family. J Expo Sci Environ Epidemiol 16:3–75

    Google Scholar 

  • Dean JR (2007) Bioavailability, bioaccessibility and mobility of environmental contaminants, 1st edn. Wiley, Chichester

    Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richter-Lafléche M (2008) Soil washing for metal removal: a review of physical(chemical technologies and field applications. J Hazard Mater 152:1–31

    CAS  Google Scholar 

  • Devliegher W, Verstraete W (1996) Lumbricus terrestris in a soil sore experiment: effects of nutrient-enrichment processes (NEP) and gut-associated processes (GAP) on the availability of plant nutrients and heavy metals. Soil Biol Biochem 28:489–496

    CAS  Google Scholar 

  • Edwards CA (2004) Earthworm ecology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • El Gharmali A, Rada A, El Meray M, Nejmeddine A (2002) Study of the effect of earthworm Lumbricus terrestris on the speciation of heavy metals in soils. Environ Technol 23:775–780

    CAS  Google Scholar 

  • Finzgar N, Lestan D (2007) Multi-step leaching of Pb and Zn contaminated soils with EDTA. Chemosphere 66:824–832

    CAS  Google Scholar 

  • Finzgar N, Kos B, Lestan D (2005) Heap leaching of lead contaminated soil using biodegradable chelator [S, S]-ethylenediamine disuccinate. Environ Technol 26:553–560

    CAS  Google Scholar 

  • Gál J, Markiewicz-Patkowska J, Hursthouse A, Tatner P (2008) Metal uptake by woodlice in urban soils. Ecotoxicol Environ Saf 69:139–149

    Google Scholar 

  • Griffiths RA (1995) Soil washing technology and practice. J Hazard Mater 40:175–189

    CAS  Google Scholar 

  • Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528

    CAS  Google Scholar 

  • Gupta SK, Vollmer MK, Krebs R (1996) The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. The Sci Environ 178:11–20

    CAS  Google Scholar 

  • Han FX, Banin A, Kingery WL, Triplett GB, Zhou LX, Zheng SJ, Ding WX (2003) New approach to studies of heavy metal redistribution in soil. Adv Environ Res 8:113–120

    CAS  Google Scholar 

  • Heikens A, Pejinenburg WJGM, Hendriks AJ (2001) Bioaccumulation of heavy metals in terrestrial invertebrates. Environ Pollut 113:385–393

    CAS  Google Scholar 

  • Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates, 1st edn. Elsevier Applied Science Publishers Ltd, London

    Google Scholar 

  • Hopkin SP, Jones DT, Dietrich D (1993) The isopod Porcellio scaber as a monitor of the bioavailability of metals in terrestrial ecosystems: towards a global ‘woodlouse watch’ scheme. Sci Total Environ 134:357–365

    Google Scholar 

  • Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments. An alternative for acute and reproduction tests. J Soil Sediment 1:15–20

    CAS  Google Scholar 

  • Hund-Rinke K, Lindermann M, Simon M (2005) Experiences with novel approaches in earthworm testing alternatives. J Soil Sediment 5:233–239

    CAS  Google Scholar 

  • ISO/TS 17924 (2007) Soil quality – Assessment of human exposure from ingestion of soil and soil material – Guidance on the application and selection of physiologically based extraction methods for the estimation of the human bioaccessibility/bioavailability of metals in soil. International Organization for Standardization, Genéve

    Google Scholar 

  • ISO 17512-1 (2008) Soil quality – avoidance test for testing the quality of soils and the toxicity of chemicals. Part I: test with earthworms (Eisenia fetida and Eisenia andrei). International Organization for Standardization, Genéve

    Google Scholar 

  • Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492

    CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kamnev AA, van der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20:239–258

    CAS  Google Scholar 

  • Kennette D, Hendershot W, Tomlin A, Suavé S (2002) Uptake of trace metals by the earthworm Lumbricus terrestris L. in urban contaminated soils. Appl Soil Ecol 19:191–198

    Google Scholar 

  • Kizilkaya R (2004) Cu and Zn accumulation in earthworm Lumbricus terrestris L. in sewage sludge amended soil and fractions of Cu and Zn in casts and surrounding soil. Ecol Eng 22:141–151

    Google Scholar 

  • Kosson DS, van der Sloot HA, Sanchez F, Garrabrants AC (2002) An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ Eng Sci 19:159–204

    CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2007) Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat. Environ Pollut 145:365–373

    CAS  Google Scholar 

  • Lacal J, da Silva MP, García R, Sevilla MT, Procopio JR, Hernández L (2003) Study of fractionation and potential mobility of metal in sludge from pyrite mining and affected river sediments: changes in mobility over time and use of artificial ageing as a tool in environmental impact assessment. Environ Pollut 124:291–309

    CAS  Google Scholar 

  • Langdon CJ, Piearce TG, Meharg AA, Semple KT (2001) Survival and behavior of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from arsenate-contaminated and non-contaminated sites. Soil Biol Biochem 33:1239–1244

    CAS  Google Scholar 

  • Langdon CJ, Hodson ME, Arnold RE, Black S (2005) Survival, Pb uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test. Environ Pollut 138:368–375

    CAS  Google Scholar 

  • Lestan D, Grcman H, Zupan M, Bacac N (2003) Relationship of soil properties to fractionation of Pb and Zn in soil and their uptake into Plantago lanceolata. Soil Sedim Contam 12:507–522

    CAS  Google Scholar 

  • Lestan D, Luo C, Li X (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13

    CAS  Google Scholar 

  • Levy DB, Barbarick KA, Siemer EG, Sommers LE (1992) Distribution and partitioning of trace metals in contaminated soil near Leadsville, Colorado. J Environ Qual 21:185–195

    CAS  Google Scholar 

  • Li X, Thornton I (2001) Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl Geochem 16:1693–1706

    CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    CAS  Google Scholar 

  • Liu X, Hu C, Zhang S (2005) Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge. Environ Int 31:874–879

    CAS  Google Scholar 

  • Lock K, Janssen CR (2002) The effect of ageing on the toxicity of zinc for the potworm Enchytraeus albidus. Environ Pollut 116:289–292

    CAS  Google Scholar 

  • Loureiro S, Soares AMVM, Nogueira AJA (2005) Terrestrial avoidance behaviour tests as a screening tool to assess soil contamination. Environ Pollut 138:121–131

    CAS  Google Scholar 

  • Lukkari T, Haimi J (2005) Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Ecotoxicol Environ Saf 62:35–41

    CAS  Google Scholar 

  • Lukkari T, Aatsinki M, Väisänen A, Haimi J (2005) Toxicity of copper and zinc assessed with three different earthworm tests. Appl Soil Ecol 30:133–146

    Google Scholar 

  • Ma Y, Dickinson NM, Wong MH (2002) Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability. Biol Fertil Soil 36:79–86

    CAS  Google Scholar 

  • Meier JR, Cheng LW, Jacobs S, Torsela J, Meckes MC, Smith MK (1997) Use of plant and earthworm bioassays to evaluate remediation of soil from a site contaminated with polychlorinated biphenyls. Environ Toxicol Chem 16:928–938

    CAS  Google Scholar 

  • Morgan JE, Morgan AJ (1988) Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils. Environ Pollut 54:123–138

    CAS  Google Scholar 

  • Morgan JE, Morgan AJ (1999) The accumulation of metals (Cd, Cu, Pb Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing. Appl Soil Ecol 13:9–20

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Neale CN, Bricka RM, Chao AC (1997) Evaluating acids and chelating agents for removing heavy metals from contaminated soils. Environ Prog 16:274–280

    CAS  Google Scholar 

  • Novozamsky I, Lexmond Th M, Houba VJG (1993) A single extraction procedure of soil evaluation of uptake of some heavy metals by plants. Int J Environ Anal Chem 51:47–58

    CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant metal phytoextraction. Environ Sci Technol 40:5225–5232

    CAS  Google Scholar 

  • Odendaal JP, Reinecke AJ (2004) Evidence of metal interaction in the bioaccumulation of cadmium and zinc in Porcellio laevis (Isopoda) after exposure to individual and mixed metals. Water Air Soil Pollut 156:1–4

    Google Scholar 

  • Oomen AG, Hack A, Minekus M, Zeijdner A, Cornelis C, Schoeters W, van der Wiele T, Wragg J, Rompelberg CJM, Sips AJAM, van Wijnen JH (2002) Comparison of five in vitro digestion models to study the bio-accessibility of soil contaminants. Environ Sci Technol 36:3326–3334

    CAS  Google Scholar 

  • Oomen AG, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM (2003) Development of an in vitro digestion model for estimating the bio-accessibility of soil contaminants. Arch Environ Contam Toxicol 44:281–287

    CAS  Google Scholar 

  • Owojori OJ, Reinecke AJ (2009) Avoidance behaviour of two eco-physiologically different earthworms (Eisenia fetida and Aporrectodea caliginosa) in natural and artificial saline soils. Chemosphere 75:279–283

    CAS  Google Scholar 

  • Paoletti MG, Hassall M (1999) Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agr Ecosyst Environ 74:157–165

    Google Scholar 

  • Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151–210

    CAS  Google Scholar 

  • Peters RW, Shem L (1992) Use of chelating agents for remediation of heavy metal contaminated soil. In: Vandegrift GE, Reed DT, Tasker IR (eds.) Environmental remediation removing organic and metal Ion pollutants. American Chemical Society, Washington, pp 70–84

    Google Scholar 

  • Pichtel J, Vine B, Kuula-Vaisanen P, Niskanen P (2001) Lead extraction from soils as affected by lead chemical and mineral forms. Environ Eng Sci 18:91–98

    CAS  Google Scholar 

  • Pociecha M, Lestan D (2009) EDTA leaching of Cu contaminated soil using electrochemical treatment of the washimg solution. J Hazard Mater 165:533–539

    CAS  Google Scholar 

  • Ramos L, Hernandez LM, Gonzales MJ (1994) Sequential fractionation of copper, lead, cadmium and zinc in soil from or near Donana national park. J Environ Qual 23:50–57

    CAS  Google Scholar 

  • Rieuwerts JS, Thornton ME, Farago ME, Ashmore MR (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Speciat Bioavailab 10:61–75

    CAS  Google Scholar 

  • Rivero VC, Masedo MD, De la Villa RV (2000) Effect of soil properties on zinc retention in agricultural soils. Agrochimica 43:46–54

    Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–430

    CAS  Google Scholar 

  • Ruiz E, Rodriguez L, Alonso-Azcárate J (2009) Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Chemosphere 75:1035–1041

    CAS  Google Scholar 

  • Sabienë N, Brazauskienë DM (2004) Determination of heavy metal mobile forms by different extraction methods. Ekologija 1:36–41

    Google Scholar 

  • Shan XQ, Lian J, Wen B (2002) Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere 47:701–710

    CAS  Google Scholar 

  • Sizmur T, Hodson ME (2009) Do earthworms impact metal mobility and availability in soil? – A review. Environ Pollut 157:1981–1989

    CAS  Google Scholar 

  • Sousa A, Pereira R, Antunes SC, Cachada A, Pereira E, Duarte AC, Gonçalves F (2008) Validation of avoidance assays for the screening assessment of soils under different anthropogenic disturbances. Ecotoxicol Environ Saf 71:661–670

    CAS  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1999) Tolerance to zinc in populations of the earthworm Lumbricus rubellus from uncontaminated and metal-contaminated ecosystems. Arch Environ Contam Toxicol 37:332–337

    CAS  Google Scholar 

  • Spurgeon DJ, Lofts S, Hankard PH, Toal M, McLellan D, Fishwick S, Svedsen C (2006) Effect of pH on metal speciation and resulting metal uptake and toxicity for earthworms. Environ Toxicol Chem 25:788–796

    CAS  Google Scholar 

  • Sun B, Zhao FJ, Lombi E, McGrath SP (2001) Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut 113:111–120

    CAS  Google Scholar 

  • Suthar S, Singh S, Dhawan S (2008) Earthworms as bioindicators of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: is metal bioaccumulation affected by their ecological category? Ecol Eng 32:99–107

    Google Scholar 

  • Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 41:7851–7856

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    CAS  Google Scholar 

  • Tiunov AV, Scheu S (2000) Microbial biomass, bio-volume and respiration in Lumbricus terrestris L. cast material of different age. Soil Biol Biochem 32:265–275

    CAS  Google Scholar 

  • Turner A, Ip KH (2007) Bio-accessibility of metals in dust from the indoor environment: application of a physiologically based extraction test. Environ Sci Technol 41:7851–7856

    CAS  Google Scholar 

  • Udovic M, Lestan D (2007a) EDTA leaching of Cu contaminated soils using ozone/UV for treatment and reuse of washing solution in a closed loop. Water Air Soil Pollut 181:319–327

    CAS  Google Scholar 

  • Udovic M, Lestan D (2007b) The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation. Environ Pollut 148:663–668

    CAS  Google Scholar 

  • Udovic M, Lestan D (2008) Remediation of soil from a former zinc smelter area with stabilization with cement. Acta Agr Slovenica 91:283–295

    CAS  Google Scholar 

  • Udovic M, Lestan D (2009) Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching. Chemosphere 74:1367–1373

    CAS  Google Scholar 

  • Udovic M, Lestan D (2010a) Redistribution of residual Pb, Zn and Cd in soil remediated with EDTA leaching and exposed to earthworms (Eisenia fetida). Environ Technol 31:655–669

    CAS  Google Scholar 

  • Udovic M, Lestan D (2010b) Fractionation and bioavailability of Cu in soil remediated by EDTA leaching and processed by earthworms (Lumbricus terrestris L.). Environ Sci Pollut Res 17:561–570

    CAS  Google Scholar 

  • Udovic M, Lestan D (2010c) Eisenia fetida avoidance behavior as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil. Environ Pollut 158:2766–2772

    CAS  Google Scholar 

  • Udovic M, Plavc Z, Lestan D (2007) The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA. Chemosphere 70:126–134

    CAS  Google Scholar 

  • Udovic M, Drobne D, Lestan D (2009) Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil. Environ Pollut 157:2822–2829

    CAS  Google Scholar 

  • Ure AM (1996) Single extraction schemes for soil analysis and related applications. Sci Total Environ 178:3–10

    CAS  Google Scholar 

  • Us EPA (1995) Test methods for evaluation of solid waste, vol IA. Laboratory Manual Physical/Chemical Methods, SW 86, 40 CFR Parts 403 and 503. GPO, Washington, DC

    Google Scholar 

  • Vijver MG, Vink JPM, Jager T, van Straalen NM, Wolterbeek HT, van Gestel CAM (2006) Kinetics of Zn and Cd accumulation in the isopod Porcellio scaber exposed to contaminated soil and/or food. Soil Biol Biochem 38:1554–1563

    CAS  Google Scholar 

  • Warburg MR (1993) Evolutionary biology of land isopods, 1st edn. Springer, Berlin

    Google Scholar 

  • Wen JHC, Wong MH (2004) Effects of earthworm activity and P-solubilizing bacteria on P availability in soil. J Plant Nutr Soil Sci 167:209–213

    Google Scholar 

  • Wen B, Hu X, Liu Y, Wang W, Feng M, Shan X (2004) The role of earthworms (Eisenia fetida) on influencing bioavailability of heavy metals in soils. Biol Fertil Soil 40:181–187

    CAS  Google Scholar 

  • Wen B, Liu Y, Hu X, Shan X (2006) Effect of earthworms (Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils. Chemosphere 63:1179–1186

    CAS  Google Scholar 

  • Weng L, Temminghoff EJM, Lofts S, Tipping E, VanRiemsdijk WH (2002) Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sci Technol 36:4804–4810

    CAS  Google Scholar 

  • Witzel B (1998) Uptake, storage and loss of cadmium and lead in the woodlouse Porcellio scaber (Crustacea, Isopoda). Water Air Soil Pollut 108:51–68

    CAS  Google Scholar 

  • Wragg J, Cave N (2002) In-vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: a critical review. R&D Technical Report P5-062/TR/01. Environment Agency, Bristol

    Google Scholar 

  • Xu Y, Zhao D (2005) Removal of copper from contaminated soil by use of poly(aminodiamine) dendrimeres. Environ Sci Technol 39:2369–2375

    CAS  Google Scholar 

  • Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77:455–493

    Google Scholar 

  • Zorn MI, Van Gestel CAM, Eijsackers H (2005) The effect of two endogeic earthworm species on zinc distribution and availability in artificial soil columns. Soil Biol Biochem 37:917–925

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domen Lestan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lestan, D., Udovic, M. (2011). Mobility and Availability of Toxic Metals After Soil Washing with Chelating Agents. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_15

Download citation

Publish with us

Policies and ethics