Skip to main content

Communication in the Rhizosphere, a Target for Pest Management

  • Chapter
  • First Online:
Agroecology and Strategies for Climate Change

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 8))

Abstract

The industrial agriculture has given rise to an excessive use and misuse of agrochemicals causing environmental pollution. Therefore, it is urgent to find alternatives that are more environmentally friendly than chemical fertilizers and pesticides for disease control. The key to achieve successful biological control strategies is the knowledge of the ecological interactions that occur belowground. The rhizosphere constitutes a very dynamic environment harbouring the plant roots and many organisms. Plants communicate and interact with those organisms through the production and release of a large variety of secondary metabolites into the rhizosphere. Thus, they use these metabolites to defend themselves against soil-borne pathogens, which can adversely affect plant growth and fitness, but also to establish mutualistic associations with beneficial soil microorganisms. However, despite the importance of these plant-organism interactions the mechanisms regulating them remain largely unknown.

We review here chemical communication that takes place in the rhizosphere between plants and other soil organisms, and the potential use of this molecular dialogue for developing new biological control strategies against deleterious organisms. We focus on the knowledge of the root parasitic weed germination stimulants – strigolactones – to develop more efficient control methods against this pest. Finally, we illustrate this with an exciting example: the use of the mutualistic arbuscular mycorrhizal symbiosis for controlling root parasitic weeds by reducing the production of strigolactones in the host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM:

arbuscular mycorrhiza

AHL:

N-acyl homoserine lactone

PGPF:

plant growth promoting fungi

PGPR:

plant growth promoting rhizobacteria

QS:

Quorum sensing

References

  • Agrios GN (2005) Plant pathology. Elsevier, New York

    Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117

    Article  PubMed  CAS  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP, Vivanco JA (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. Plos Biol 4:1239–1247

    Article  CAS  Google Scholar 

  • Bird DM, Kaloshian I (2003) Are roots special? Nematodes have their say. Physiol Mol Plant P 62:115–123

    Article  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 27(1):1–11

    Article  Google Scholar 

  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester HJ, Roux C, López-Ráez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  PubMed  CAS  Google Scholar 

  • Bucher M, Wegmuller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 12:500–507

    Article  PubMed  CAS  Google Scholar 

  • Caillaud MC, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecornte P, Engler JD, Abad P, Rosso MN, Favery B (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165:104–113

    Article  PubMed  CAS  Google Scholar 

  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) Germination stimulants. 2. The structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea Lour.). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • Delgado JA (2002) Quantifying the loss mechanisms of nitrogen. J Soil Water Conserv 57:389–398

    Google Scholar 

  • Ejeta G (2007) Breeding for Striga resistance in sorghum: exploitation of an intricate host-parasite biology. Crop Sci 47:S216–227

    Article  Google Scholar 

  • Estabrook EM, Yoder JI (1998) Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol 116:1–7

    Article  CAS  Google Scholar 

  • Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    Article  CAS  Google Scholar 

  • Fernández-Aparicio M, García-Garrido JM, Ocampo JA, Rubiales D (2010) Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Res 50:262–268

    Article  Google Scholar 

  • Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231–243

    Article  Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  PubMed  CAS  Google Scholar 

  • Garcia VG, Onco MAP, Susan VR (2006) Review. Biology and systematics of the form genus Rhizoctonia. Span J Agric Res 4:55–79

    Google Scholar 

  • Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27:59–68

    Article  CAS  Google Scholar 

  • Genin S, Boucher C (2004) Lessons learned from the genome analysis of Ralstonia solanacearum. Annu Rev Phytopathol 42:107–134

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagés V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  PubMed  CAS  Google Scholar 

  • Gressel J, Hanafi A, Head G, Marasas W, Obilana AB, Ochanda J, Souissi T, Tzotzos G (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot 23:661–689

    Article  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors - controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868

    Article  Google Scholar 

  • Horiuchi J, Prithiviraj B, Bais HP, Kimball BA, Vivanco JM (2005) Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222:848–857

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Foy CL (1992) Nutrient effects on parasitism and germination of Egyptian broomrape (Orobanche aegyptiaca). Weed Technol 6:269–275

    CAS  Google Scholar 

  • Jamil M, Charnikhova T, Verstappen F, Bouwmeester H (2010) Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Arch Biochem Biophys 504:123–131

    PubMed  CAS  Google Scholar 

  • Joel DM, Hershenhom Y, Eizenberg H, Aly R, Ejeta G, Rich JP, Ransom JK, Sauerborn J, Rubiales D (2007) Biology and management of weedy root parasites. Hortic Rev 33:267–349

    Article  CAS  Google Scholar 

  • Johnson AW, Roseberry G, Parker C (1976) A novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Res 16:223–227

    Article  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  PubMed  CAS  Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel DM, Weininger S, Lekalla S, Shealtiel H, Bhattacharya C, Eliahu E, Resnick N, Barg R, Kapulnik Y (2010) Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Regul 29:129–136

    Article  CAS  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  PubMed  CAS  Google Scholar 

  • Lendzemo VW, Kuyper TW, Kropff MJ, van Ast A (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Res 91:51–61

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, van Ast A (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal Behav 2:58–62

    Article  PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008a) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    Article  PubMed  Google Scholar 

  • López-Ráez JA, Charnikhova T, Mulder P, Kohlen W, Bino R, Levin I, Bouwmeester H (2008b) Susceptibility of the tomato mutant high pigment-2 (hp-2 dg) to Orobanche spp infection. J AgricFood Chem 56:6326–6332

    Article  Google Scholar 

  • López-Ráez JA, Matusova R, Cardoso C, Jamil M, Charnikhova T, Kohlen W, Ruyter-Spira C, Verstappen F, Bouwmeester H (2009) Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag Sci 64:471–477

    Article  Google Scholar 

  • López-Ráez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ (2011) Arbuscular mycorhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297

    Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  PubMed  CAS  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  PubMed  CAS  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139: 920–934

    Article  PubMed  CAS  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    Article  PubMed  CAS  Google Scholar 

  • Nagahashi G, Douds DD (2004) Isolated root caps, border cells, and mucilage from host roots stimulate hyphal branching of the arbuscular mycorrhizal fungus, Gigaspora gigantea. Mycol Res 108:1079–1088

    Article  PubMed  Google Scholar 

  • Otten W, Gilligan CA (2006) Soil structure and soil-borne diseases: using epidemiological concepts to scale from fungal spread to plant epidemics. Eur J Soil Sci 57:26–37

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses 2006. New Phytol 172:35–46

    Article  PubMed  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  PubMed  CAS  Google Scholar 

  • Perry RN, Moens M (2006) Plant nematology. CABI publishing, London

    Book  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unravelling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  PubMed  CAS  Google Scholar 

  • Priest FG, Campbell I (2003) Brewing microbiology. Kluwer, New York

    Book  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Raghothama KG (2000) Phosphate transport and signaling. Curr Opin Plant Biol 3:182–187

    PubMed  CAS  Google Scholar 

  • Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626

    Article  PubMed  CAS  Google Scholar 

  • Reddy PM, Rendon-Anaya M, de los Dolores Soto del Rio M (2007) Flavonoids as signaling molecules and regulators of root nodule development. Dyn Soil Dyn Plant 1:83–94

    Google Scholar 

  • Requena N, Serrano E, Ocon A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68:33–40

    Article  PubMed  CAS  Google Scholar 

  • Rispail N, Dita MA, Gonzalez-Verdejo C, Perez-de-Luque A, Castillejo MA, Prats E, Roman B, Jorrin J, Rubiales D (2007) Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytol 173:703–711

    Article  PubMed  CAS  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeij A, van Bezouwen L, de Ruijter N, Cardoso C, López-Ráez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analogue GR24 on root system architecture in Arabidopsis: Another below-ground role of strigolactones? Plant Physiol 155:721–734

    Google Scholar 

  • Sbrana C, Giovannetti M (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 15:539–545

    Article  PubMed  CAS  Google Scholar 

  • Schenk H, Driessen RAJ, de Gelder R, Goubitz K, Nieboer H, Bruggemann-Rotgans IEM, Diepenhorst P (1999) Elucidation of the structure of Solanoeclepin A, a natural hatching factor of potato and tomato cyst nematodes, by single-crystal x-ray diffraction. Croatica Chemica Acta 72:593–606

    CAS  Google Scholar 

  • Scholes JD, Press MC (2008) Striga infestation of cereal crops - an unsolved problem in resource limited agriculture. Curr Opin Plant Biol 11:180–186

    Article  PubMed  Google Scholar 

  • Siegler DS (1998) Plant secondary metabolism. Kluwer, Boston

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith SE, Barker SJ, Zhu YG (2006) Fast moves in arbuscular mycorrhizal symbiotic signalling. Trends Plant Sci 11:369–371

    Article  PubMed  CAS  Google Scholar 

  • Soto MJ, Fernandez-Aparicio M, Castellanos-Morales V, Garcia-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    Article  CAS  Google Scholar 

  • Sprent JI (2009) Legume nodulation. A global perspective. Wiley-Blackwell, Chichester

    Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Matusova R, Bouwmeester H (2007) Germination of Striga and chemical signaling involved: a target for control methods. In: Gressel J, Ejeta G (eds) Integrating new technologies for Striga control: towards ending the witch-hunt. World Scientific, Nairobi, pp 47–60

    Chapter  Google Scholar 

  • Sun Z, Hans J, Walter MH, Matusova R, Beekwilder J, Verstappen FWA, Ming Z, van Echtelt E, Strack D, Bisseling T, Bouwmeester HJ (2008) Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta 228:789–801

    Article  PubMed  CAS  Google Scholar 

  • Thompson JN (2005) Coevolution: the geographic mosaic of coevolutionary arms races. Curr Biol 15:R992–R994

    Article  PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  PubMed  CAS  Google Scholar 

  • Varma A, Verma S, Sudha, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    PubMed  CAS  Google Scholar 

  • Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311

    Article  PubMed  CAS  Google Scholar 

  • Weerasinghe RR, Bird DM, Allen NS (2005) Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc Natl Acad Sci U S A 102:3147–3152

    Article  PubMed  CAS  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  PubMed  CAS  Google Scholar 

  • Wigchert SCM, Kuiper E, Boelhouwer GJ, Nefkens GHL, Verkleij JAC, Zwanenburg B (1999) Dose-response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR24 and Nijmegen 1. J Agric Food Chem 47:1705–1710

    Article  PubMed  CAS  Google Scholar 

  • Williamson VM, Gleason CA (2003) Plant-nematode interactions. Curr Opin Plant Biol 6:327–333

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama K, Takeuchi Y, Yokota T (2001) Production of clover broomrape seed germination stimulants by red clover requires nitrate but it inhibited by phosphate and ammonium. Physiol Plant 112:25–30

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie XN, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama K, Xie X, Yoneyama K, Takeuchi Y (2009) Strigolactones: structures and biological activities. Pest Manag Sci 65:467–470

    Article  PubMed  CAS  Google Scholar 

  • Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag Sci 65:478–491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our research is supported by grants PERG-02-2007-224751 from the Marie Curie program from the European Commission, AGL2009-07691 from the National R&D Plan of the MINCIN, and The Netherlands Organisation for Scientific Research (NWO; VICI-grant to HB). HB is also (co) financed by the Centre for BioSystems Genomics (CBSG), a part of the Netherlands Genomics Initiative/Netherlands Organisation for Scientific Research. JAL-R is supported by a postdoctoral contract (JAE-Doc) from the Spanish Research Council (CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio López-Ráez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

López-Ráez, J.A., Bouwmeester, H., Pozo, M.J. (2012). Communication in the Rhizosphere, a Target for Pest Management. In: Lichtfouse, E. (eds) Agroecology and Strategies for Climate Change. Sustainable Agriculture Reviews, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1905-7_5

Download citation

Publish with us

Policies and ethics