Skip to main content
Book cover

Anoxia pp 167–188Cite as

Ecological and Experimental Exposure of Insects to Anoxia Reveals Surprising Tolerance

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 21))

Abstract

A growing number of studies have examined insect survival times during exposure to severe hypoxia and anoxia. Ecologically, terrestrial insects can be exposed to these conditions during immersion from terrestrial flooding, from encasement in ice during winter periods, and as a result of specialization to feed in decomposing material, or as internal parasites of vertebrates. Severe hypoxia has also been tested against a multitude of stored product and museum pests as an alternative to chemical treatment. Finally, severe hypoxia has been induced experimentally to examine physiological responses of a few model species. Together, these experiments have revealed a surprising tolerance of insects to severe hypoxia ranging from hours to weeks. In some cases, ecological studies have revealed apparent adaptation to flooding frequency and duration, while in other cases, the patterns of survival do not appear to correspond with likely abiotic challenges. This chapter seeks to summarize the body of experimental work on insects in hypoxia and to serve as a frame of reference for future experiments aimed at elucidating the adaptive significance of anoxia tolerance by members of the most diverse, ecologically important, and physiologically varied animals on the planet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson JF, Ultsch GR (1987) Respiratory gas concentration in the microhabitats of some Florida arthropods. Comp Biochem and Phys 88:585–588

    Google Scholar 

  • Bailey SW, Banks FJ (1980) A review of the recent studies of the effect of controlled atmosphere on stored-product pests. In: Shejbal J (ed) Controlled atmosphere storage of grains. Elsevier Scientific Publishing Co, Amsterdam

    Google Scholar 

  • Banks HJ, Annis PC (1977) Suggested procedures for controlled atmosphere storage of dry grain CSIRO. Aust Div Entomol Tech Pap 13

    Google Scholar 

  • Baumgartl H, Kritzler K, Zimelka W, Zinkler D (1994) Local Po2 measurements in the environment of submerged soil microarthropods. Acta Oecologia 15:781–789

    Google Scholar 

  • Block W, Sømme L (1983) Low temperature adaptations in beetles from the sub-Antarctic island of South Georgia. Polar Biol 2:109–114

    Google Scholar 

  • Bradley TJ (2000) The discontinuous gas exchange cycle in insects may serve to reduce oxygen supply to the tissues. Am Zool 40:952

    Google Scholar 

  • Brust ML, Hoback WW (2009) Hypoxia tolerance in adult and larval Cicindela tiger beetles varies by life history but not habitat association. Ann Entomol Soc Am 102:462–466

    Article  Google Scholar 

  • Brust ML, Hoback WW, Skinner KM, Knisley CB (2005) Differential immersion survival by populations of Cicindela hirticollis Say (Coleoptera: Cicindelidae). Ann Entomol Soc Am 98:973–979

    Article  Google Scholar 

  • Brust ML, Hoback WW, Wright RJ (2007) Immersion tolerance in rangeland grasshoppers (Orthoptera: Acrididae). J Orthop Res 16:135–138

    Article  Google Scholar 

  • Centanin L, Gorr TA, Wappner P (2010) Tracheal remodeling in response to hypoxia. J Insect Physiol 56:447–454

    Article  PubMed  CAS  Google Scholar 

  • Chapman RF (1982) The insects structure and function. Harvard University Press, Cambridge

    Google Scholar 

  • Chefurka W (1965) Some comparative aspects of the metabolism of carbohydrates in insects. Annu Rev Entomol 10:345–382

    Article  CAS  Google Scholar 

  • Chen Q, Haddad GG (2004) Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J Exp Biol 207:3125–3129

    Article  PubMed  CAS  Google Scholar 

  • Chown SL, Holter P (2000) Discontinuous gas exchange cycles in Aphodius fossor (Scarabaeidae): a test of hypotheses concerning the origins and mechanisms. J Exp Biol 203:397–403

    Google Scholar 

  • Chown SL, Nicholson SW (2004) Insect physiological ecology. Oxford University Press, New York

    Book  Google Scholar 

  • Chown SL, Gibbs AG, Hetz SK, Klok CJ, Lighton JRB, Marias E (2006) Discontinuous gas exchange in insects: a clarification of hypotheses and approaches. Physiol Biochem Zool 79:333–343

    Article  PubMed  CAS  Google Scholar 

  • Conradi-Larsen E-M, Sømme L (1973) Anaerobiosis in the overwintering beetle Pelophila borealis. Nature 245:388–390

    Article  CAS  Google Scholar 

  • Contreras HL, Bradley TJ (2009) Metabolic rate controls respiratory pattern in insects. J Exp Biol 212:424–428

    Article  PubMed  CAS  Google Scholar 

  • Dawson-Scully K, Bukvic D, Chakborty-Chatterjee M, Ferreira R, Milton SL, Sokolowski MB (2010) Controlling anoxic tolerance in adult Drosophila via the cGMP-PKG pathway. J Exp Biol 213:2410–2416

    Article  PubMed  CAS  Google Scholar 

  • Delate KM, Armstrong JW, Jones VP (1994) Postharvest control treatments for Hypothenemus obscures (F.) (Coleoptera: Scolytidae) in Macadamia nuts. J Econ Entomol 87:120–126

    Google Scholar 

  • der Geest V (2007) Behavioral responses of caddisfly larvae (Hydropsyche angustipennis) to hypoxia. Contrib Zool 76:255–260

    Google Scholar 

  • Donahaye E (1990) Laboratory selection of resistance by the red flour beetle, Tribolium castaneum (Herbst), to an atmosphere of low oxygen concentration. Phytoparasitica 18:189–202

    Article  Google Scholar 

  • Foster WA, Treherne JE (1976) The effects of tidal submergence on an intertidal aphid, Pemphigus trehernei Foster. J Anim Ecol 45:291–301

    Article  Google Scholar 

  • Gallon C, Hare L, Tessier A (2008) Surviving in anoxic surroundings: how burrowing aquatic insects create an oxic microenvironment. J N Am Benthol Soc 27:570–580

    Article  Google Scholar 

  • Gaufin AR (1973) Water quality requirements of aquatic insects. EPA 660/3-73-004. United States Environmental Protection Agency, Corvallis, 86 pp

    Google Scholar 

  • Gilberg M (1989) Inert atmosphere fumigation of museum objects. Stud Conserv 34:30–34

    Article  Google Scholar 

  • Gilberg M (1991) The effects of low oxygen atmospheres on museum pests. Stud Conserv 36:93–98

    Article  Google Scholar 

  • Greenlee KJ, Harrison JF (1998) Acid-base and respiratory responses to hypoxia in the grasshopper Shistocerca americana. J Exp Biol 210:2843–2855

    Google Scholar 

  • Grieshaber MK, Hardewig I, Kreutzer U, Portner H-O (1994) Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 125:43–147

    Article  PubMed  CAS  Google Scholar 

  • Hamilton J (1885) Hibernation of the Coleoptera. Can Entomol 17:35–38

    Article  Google Scholar 

  • Harrison J, Frazier MR, Henry JR, Kaiser A, Klok CJ, Rascón B (2006) Responses of terrestrial insects to hypoxia or hyperoxia. Respir Physiol Neurobiol 154:4–17

    Article  PubMed  CAS  Google Scholar 

  • Held DW, Potter DA, Gates BS, Anderson RG (2001) Modified atmosphere treatments as a potential disinfestations technique for arthropod pests in greenhouses. J Econ Entomol 94:430–438

    Article  PubMed  CAS  Google Scholar 

  • Heslop JP, Price GM, Ray JW (1963) Anaerobic metabolism in the housefly, Musca domestica L. Biochem J 87:35–38

    PubMed  CAS  Google Scholar 

  • Hetz SK, Bradley TJ (2005) Insects breathe discontinuously to avoid oxygen toxicity. Nature 433:516–519

    Article  PubMed  CAS  Google Scholar 

  • Hoback WW, Stanley DW (2001) Insects in hypoxia. J Insect Physiol 47:533–542

    Article  PubMed  CAS  Google Scholar 

  • Hoback WW, Higley LG, Stanley DW, Barnhart MC (1998) Survival of immersion and anoxia by larval tiger beetles, Cicindela togata. Am Midl Nat 140:27–33

    Article  Google Scholar 

  • Hoback WW, Podrabsky JE, Higley LG, Stanley DW, Hand SC (2000) Anoxia tolerance of con-familial tiger beetle larvae is associated with differences in energy flow and anaerobiosis. J Comp Physiol B 170:307–314

    Article  PubMed  CAS  Google Scholar 

  • Hoback WW, Clark TL, Meinke LJ, Higley LG, Scalzitti JM (2002) Immersion survival differs among three Diabrotica species. Entomol Exp Appl 105:29–34

    Article  Google Scholar 

  • Hochachka PW, Nener JC, Hoar J, Saurez RK (1993) Disconnecting metabolism from adenylate control during extreme oxygen limitation. Can J Zool 71:1267–1270

    Article  CAS  Google Scholar 

  • Hodkinson ID, Bird JB (2004) Anoxia tolerance in high arctic terrestrial microarthropods. Ecol Entomol 29:506–509

    Article  Google Scholar 

  • Holter P (1991) Concentrations of oxygen, carbon dioxide and methane in the air within dung pats. Pedobiolgica 35:381–386

    CAS  Google Scholar 

  • Holter P, Spangenberg A (1997) Oxygen uptake in coprophilous beetles (Aphodius, Geotrupes, Sphaeridium) at low oxygen and high carbon dioxide concentrations. Physiol Entomol 22:339–343

    Article  Google Scholar 

  • Jayas DS, Jeyamkondan S (2002) Modified atmosphere storage of grains meats fruits and vegetables. Biosyst Eng 82:235–251

    Article  Google Scholar 

  • Joanisse DR, Storey KB (1998) Oxidative stress and antioxidants in stress recovery of cold-hardy insects. Insect Biochem Mol Biol 28:23–30

    Article  CAS  Google Scholar 

  • Knipling GD, Sullivan WN, Fulton RA (1961) The survival of several species of insects in a nitrogen atmosphere. J Econ Ent 54:1054–1055

    Google Scholar 

  • Kölsch G (2001) Anoxia tolerance and anaerobic metabolism in two tropical weevil species (Coleoptera, Curculionidae). J Comp Physiol B 171:595–602

    Article  PubMed  Google Scholar 

  • Kölsch G, Jakobi K, Wegener G, Braune HJ (2002) Energy metabolism and metabolic rate of the alder leaf beetle Agelastica alni (L.) (Coleoptera, Chrysomelidae) under aerobic and anaerobic conditions: a micorcalorimetric study. J Insect Physiol 48:143–151

    Article  PubMed  Google Scholar 

  • Krafsur ES, Graham CL (1970) Spiracular responses of Aedes mosquitoes to carbon dioxide and oxygen. Ann Entomol Soc Am 63:691–696

    PubMed  CAS  Google Scholar 

  • Krishnan SN, Sun YA, Mohsenin A, Wyman RJ, Haddad GG (1997) Behavioral and electrophysiological responses of Drosophila melanogaster to prolonged periods of anoxia. J Insect Physiol 43:203–210

    Article  PubMed  CAS  Google Scholar 

  • Leinaas HP, Sømme L (1984) Adaptations in Xenylla maritima and Anurophorus laricis (Collembola) to lichen habitats on alpine rocks. Oikos 43:197–206

    Article  Google Scholar 

  • Levenbook L (1950) The effect of carbon dioxide and certain respiratory inhibitors on the respiration of larvae of the horse bot fly (Gastrophilus intestinalis De Geer). J Exp Biol 28:181–202

    Google Scholar 

  • Lighton JRB (1996) Discontinuous gas exchange in insects. Annu Rev Entomol 41:309–324

    Article  PubMed  CAS  Google Scholar 

  • Lighton JRB (2007) Respiratory biology: why insects evolved discontinuous gas exchange. Curr Biol 17:645–647

    Article  Google Scholar 

  • Ma E, Xu T, Haddad GG (1999) Gene regulation by O2 deprivation: an anoxia-regulated novel gene in Drosophila melanogaster. Brain Res Mol Brain Res 63:217–224

    Article  PubMed  CAS  Google Scholar 

  • Mani MS (1968) Ecology and biogeography of high altitude insects. W.S. Junk N.V. Publishers, Belinfante, 527 pp

    Google Scholar 

  • Marais E, Klok CJ, Terblanch JS, Chown SL (2005) Insect gas exchange patterns: a phylogenetic perspective. J Exp Biol 14:470–472

    Google Scholar 

  • Mathews PG, White CR (2011) Discontinuous gas exchange in insects: is it all in their heads? Am Nat 177:130–134

    Article  Google Scholar 

  • Meidell EM (1983) Diapause, aerobic and anaerobic metabolism in alpine adult Melasoma collaris (Coleoptera). Oikos 41:239–244

    Article  Google Scholar 

  • Meyer SGE (1977) Concentrations of some glycolytic and other intermediates in larvae of Callitroga macellaria (F.) (Diptera, Calliphoridae) during anaerobiosis. Comp Biochem Physiol B 58:49–55

    Article  CAS  Google Scholar 

  • Miller MF, Labandeira CC (2002) Slow crawl across the salinity divide: delayed colonization of freshwater ecosystems by invertebrates. GSA Today 12:4–10

    Article  Google Scholar 

  • Nagell B (1977) Survival of Cloeon dipterum (Ephemeroptera) larvae under anoxic conditions in winter. Oikos 29:161–165

    Article  CAS  Google Scholar 

  • Nagell B, Fagerstrom T (1978) Adaptations and resistance to anoxia in Cloeon dipterum (Ephemeroptera) and Nemoura cinera (Plecoptera). Oikos 30:95–99

    Article  Google Scholar 

  • Nagell B, Landahl C-C (1978) Resistance to anoxia of Chironomus plumosus and Chironomus anthracinus (Diptera) larvae. Holarct Ecol 1:333–336

    Google Scholar 

  • Nielsen MG (1997) Nesting biology of the mangrove mud-nesting ant Polyrhachis sokolova Forel (Hymenoptera, Formicidae) in northern Australia. Insectes Sociaux 44:15–21

    Article  Google Scholar 

  • Nielsen MG, Christian KA (2007) The mangrove ant, Camponotus andersoni, switches to anaerobic respiration in response to elevated CO2 levels. J Insect Physiol 53:505–508

    Article  PubMed  CAS  Google Scholar 

  • Paim U, Beckel WE (1964) Effects of environmental gases on the motility and survival of larvae and pupae of Orthosoma brunnem (Forster) (Col. Cerambycidae). Can J Zool 42:59–69

    Article  CAS  Google Scholar 

  • Quinlan MC, Gibbs AG (2006) Discontinuous gas exchange in terrestrial insects. Respir Physiol Neurobiol 154:18–29

    Article  PubMed  CAS  Google Scholar 

  • Redecker B, Zebe E (1988) Anaerobic metabolism in aquatic insect larvae: studies on Chironomus thummi and Culex pipiens. J Comp Physiol B 158:307–315

    Article  CAS  Google Scholar 

  • Rosenberg DM, Resh VH (eds) (1993) Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York, 488 pp

    Google Scholar 

  • Rust M, Kennedy J (1993) The feasibility of using modified atmospheres to control insect pests in museums. Internal report, The Getty Conservation Institute Scientific Program, Marina del Rey

    Google Scholar 

  • Schmidt-Nielson K (1990) Animal physiology: adaptation and environment, 4th edn. Cambridge University Press, New York, 602 pp

    Google Scholar 

  • Soderstrom EL, Brandl DG, Mackey B (1990) Responses of codling moth (Lepidoptera: Tortricidae) life stages to high carbon dioxide or low oxygen atmospheres. J Econ Entomol 83:472–475

    Google Scholar 

  • Sømme L (1974) Anaerobiosis in some alpine Coleoptera. Norsk Entomol Tidskr 21:155–158

    Google Scholar 

  • Sømme L (1979) Overwintering ecology of alpine Collembola and oribatid mites from the Austrian Alps. Ecol Entomol 4:175–180

    Article  Google Scholar 

  • Sømme L, Block W (1982) Cold hardiness of Collembola at Signy Island, maritime Antarctic. Oikos 38:168–176

    Article  Google Scholar 

  • Sømme L, Conradi-Larsen E-M (1977) Anaerobiosis in overwintering collembolans and oribatid mites from windswept mountain ridges. Oikos 29:127–132

    Article  Google Scholar 

  • Storey KB, Storey JM (1992) Biochemical adaptations for winter survival in insects. In: Steponkus PL (ed) Advances in low-temperature biology, vol 1. JAI Press, London, pp 101–140

    Google Scholar 

  • Teixeria LAF, Averill AL (2006) Evaluation of flooding for cultural control of Sparganothis sulfureana (Lepidoptera: Torticidae) in cranberry bogs. Environ Entomol 35:670–675

    Article  Google Scholar 

  • Valentin N (1993) Comparative analysis of insect control by nitrogen, argon, and carbon dioxide in museum, archive, and herbarium collections. Int Biodeterior Biodegrad 32:263–278

    Article  Google Scholar 

  • Valentin N, Preusser FD (1990) Insect control by inert gases in museums, museum archives, and museum collections. Restaurator 11:22–33

    Article  CAS  Google Scholar 

  • Wang F, Tessier A, Hare L (2001) Oxygen measurements in the burrows of freshwater insects. Freshwater Biol 46:317–327

    Google Scholar 

  • Ward P, Labandeira C, Laurin M, Berner RA (2006) Confirmation of Romer’s Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proc Natl Acad Sci U S A 103:16818–16822

    Article  PubMed  CAS  Google Scholar 

  • Wegener G (1993) Hypoxia and post hypoxic recovery in insects: physiological and metabolic aspects. In: Hochachaka PW, Lutz PL, Rosenthal M, Sick T, van den Thillart G (eds) Surviving hypoxia – mechanisms of control and adaptation. CRC Press, Boca Raton, pp 417–432

    Google Scholar 

  • Westneat MW, Belz O, Blob RW, Fezzaa K, Cooper WJ, Lee W-K (2003) Tracheal respiration in insects visualized with synchrotron x-ray imaging. Science 299:558–560

    Article  PubMed  CAS  Google Scholar 

  • White CR, Blackburn TM, Terblanche JS, Marias E, Gibernau M, Chown SL (2007) Evolutionary responses of discontinuous gas exchange in insects. Proc Natl Acad Sci U S A 104:8357–8361

    Article  PubMed  CAS  Google Scholar 

  • Williams AA, Rose MR, Bradley TJ (1997) CO2 release patters in Drosophila melanogaster: the effect of selection for desiccation resistance. J Exp Biol 200:615–624

    PubMed  CAS  Google Scholar 

  • Wingrove JA, O’Farrell PH (1999) Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell 98:105–114

    Article  PubMed  CAS  Google Scholar 

  • Wyatt TD (1986) How a subsocial intertidal beetle, Bledius spectabilis, prevents flooding and anoxia in its burrow. Behav Ecol Sociobiol 19:323–331

    Article  Google Scholar 

  • Zerm M, Adis J (2003) Exceptional anoxia resistance in larval tiger beetle, Phaeoxantha klugii (Coleoptera: Cicindelidae). Physiol Entomol 28:150–153

    Article  Google Scholar 

  • Zerm M, Walenciak O, Val AL, Adis J (2004a) Evidence for anaerobic metabolism in the larval tiger beetle, Phaeoxantha klugii (Col. Cicindelidae) from a central Amazonian floodplain (Brazil). Physiol Entomol 29:483–488

    Article  CAS  Google Scholar 

  • Zerm M, Zinkler D, Adis J (2004b) Oxygen uptake and local PO2 profiles of submerged larvae of Phaexantha klugii (Coleoptera: Cicindelidae), as well as their metabolic rate in air. Physiol Biochem Zool 77:378–389

    Article  PubMed  CAS  Google Scholar 

  • Zinkler D, Russbeck R (1986) Ecolophysiological adaptations of collembolan to low oxygen concentrations. In: Dallai R (ed) International Seminar on Apterygota. University of Siena, Siena, pp 123–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Wyatt Hoback .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hoback, W.W. (2012). Ecological and Experimental Exposure of Insects to Anoxia Reveals Surprising Tolerance. In: Altenbach, A., Bernhard, J., Seckbach, J. (eds) Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_10

Download citation

Publish with us

Policies and ethics