Skip to main content

Multisensor Fusion of Remote Sensing Data for Crop Disease Detection

  • Chapter
Book cover Geospatial Techniques for Managing Environmental Resources

Abstract

There is an increasing pressure to reduce use of pesticides in modern crop production in order to decrease the environmental impact of current practice and to lower the cost of production. It is therefore important that spraying of chemicals only takes place when and where it is really needed. Since disease appearance in fields is frequently patchy, sprays may be applied unnecessarily to disease-free areas. The control of disease could be more efficient if disease patches within fields could first be identified and then phytosanitary chemicals are applied only to the infected areas. Recent developments in optical sensor technology and control systems provide the potential to enable direct detection of foliar diseases under field conditions and subsequent precise application of chemicals through targeted spraying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, R., Diederich, J. and Tickle, A.B. (1995). Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8(6), 373-389.

    Article  Google Scholar 

  • Apan, A., Held, A., Phinn, S. and Markley, J. (2004). Detecting sugarcane orange rust disease using EO-1 Hyperion hyperspectral imagery. International Journal of Remote Sensing, 25(2), 489-498.

    Article  Google Scholar 

  • Blakeman, R.H., Bryson, R.J. and Dampney, P. (2000). Assessing crop condition in real time using high resolution satellite imagery. 1n: Aspects of Applied Biology 60, Remote Sensing in Agriculture (pp. 163-171). The Association of Applied Biologists, Wellesbourne, UK.

    Google Scholar 

  • Bravo, C., Moshou, D., West, J., McCartney, A. and Ramon, H. (2003). Detailed Spectral Reflection Information for Early Disease Detection in Wheat Fields. Biosystems Engineering, 84(2), 137-145.

    Article  Google Scholar 

  • Bravo, C., Moshou, D., Oberti, R., West, J., McCartney, A., Bodria, L. and Ramon, H. (2004, December). Foliar disease detection in the field using optical sensor fusion. International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal, Manuscript FP 04 008, 6. Retrieved April 7, 2011, from http://www.cigrjournal.org/index.php/Ejournal/article/view/537/531 .

  • Cui, D., Zhang, Q., Li, M. Hartman, G.L. and Zhao, Y. (2010). Image processing methods for quantitatively detecting soybean rust from multispectral images. Biosystems Engineering, 107(3), 186-193.

    Article  Google Scholar 

  • Ding, X.Q. and Xin, S. (2006). Application research on extraction of rule from artificial neural networks for nonlinear regression. Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Mathematical Analysis, 13, 565-568.

    Google Scholar 

  • Du, Q., French, J.V., Skaria, M., Yang, C. and Everitt, J.H. (2004). Citrus pest stress monitoring using airborne hyperspectral imagery. In: Conference Proceedings of the International Geoscience and Remote Sensing Symposia Vol. VI (pp. 39813984). Piscataway, New Jersey, IEEE.

    Google Scholar 

  • Fauvel, M., Benediktsson, J.A., Chanussot, J. and Sveinsson, J.R. (2008). Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 46(11), 38043814.

    Article  Google Scholar 

  • Franke, J. and Menz, G. (2007). Multi-temporal wheat disease detection by multi- spectral remote sensing. Precision Agriculture, 8, 161-172.

    Article  Google Scholar 

  • Hall, D.L. (1992). Mathematical Techniques in Multisensor Data Fusion. Artech House, Boston/London, UK.

    Google Scholar 

  • Herrala, E., Okkonen, J., Hyvarinen, T., Aikio, M. and Lammasniemi, J. (1994). Imaging spectrometer for process industry applications. Paper presented at Optical Measurements and Sensors for the Process Industries, Frankfurt, Germany.

    Google Scholar 

  • Johnson, D.A., Alldredge, J.R., Hamm, P.B. and Frazier, B.E. (2003). Aerial photography used for spatial pattern analysis of late blight infection in irrigated potato circles. Phytopathology, 93(7), 805-812.

    Article  Google Scholar 

  • Krasnopolsky, V.M. and Schiller, H. (2003). Some neural network applications in environmental sciences. Part I: Forward and inverse problems in geophysical remote measurements. Neural Networks, 16(3-4), 321-334.

    Google Scholar 

  • Kung, H.Y., Hua, J.S. and Chen, C.T. (2006). Drought forecast model and framework using wireless sensor networks. Journal of Information Science and Engineering, 22(4), 751-769.

    Google Scholar 

  • Lee, W.S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D. and Li, C. (2010). Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 74(1), 2-33.

    Article  Google Scholar 

  • Lofstrom, T., Johansson, U. and Niklasson, L. (2004). Rule extraction by seeing through the model. In: N.R. Pal et al. (Eds.), Lecture Notes in Computer Science 3316: Neural Information Processing (pp. 555-560). Springer, Berlin-Heidelberg, Germany.

    Google Scholar 

  • Loyola, R.D.G. (2006). Applications of neural network methods to the processing of Earth observation satellite data. Neural Networks, 19(2), 168-177.

    Article  Google Scholar 

  • Mitra, P., Shankar, B.U. and Pal, S. (2004). Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recognition Letters, 25(9), 1067-1074.

    Article  Google Scholar 

  • Moshou, D., Bravo, C., West, J., McCartney, A. and Ramon, H. (2004). Automatic detection of yellow rust in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture, 44(3), 173-188.

    Article  Google Scholar 

  • Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A. and Ramon, H. (2005). Plant disease detection based on data fusion of hyper-spectral and multi- spectral fluorescence imaging using Kohonen maps. Real-Time Imaging, 11(2), 75-83.

    Article  Google Scholar 

  • Myers, V.I. (1983). Remote sensing applications in agriculture. In: R.N. Colwell (Ed.), Manual of Remote Sensing (pp. 2111-2228). American Society of Photogrammetry, Falls Church, VA.

    Google Scholar 

  • Nunez, H., Angulo, C. and Catala, A. (2006). Rule-based learning systems for support vector machines. Neural Processing Letters, 24(1), 1-18.

    Article  Google Scholar 

  • Pal, M. (2008). Ensemble of support vector machines for land cover classification. International Journal of Remote Sensing, 29(10), 3043-3049.

    Article  Google Scholar 

  • Ryerson, R.A., Curran, P.J. and Stephens, PR. (1997). Applications: agriculture. In: W.R. Philipson (Ed.), Manual of Photographic Interpretation (pp. 365-397). American Society for Photogrammetry and Remote Sensing, Bethesda, MD.

    Google Scholar 

  • Saad, E.W. and Wunsch, D.C. (2007). Neural network explanation using inversion. Neural Networks, 20(1), 78-93.

    Article  Google Scholar 

  • Vanderplank, J.E. (1984). Disease Resistance in Plants. Academic, New York/London, UK.

    Google Scholar 

  • Vapnik, V.N. (1998). Statistical Learning Theory. Wiley Interscience, New York.

    Google Scholar 

  • Vapnik, V.N. (1999). The Nature of Statistical Learning Theory. Springer-Verlag, New York.

    Google Scholar 

  • Zhang, L. and Dickinson, M. (2001). Fluorescence from rust fungi: a simple and effective method to monitor the dynamics of fungal growth in planta. Physiological and Molecular Plant Pathology, 59(3), 137-141.

    Article  Google Scholar 

  • Zhang, L., Huang, X., Huang, B. and Li, P. (2006). A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing, 44(10), 29502961.

    Google Scholar 

  • Zhang, R. and Ma, J. (2008). An improved SVM method P-SVM for classification of remotely sensed data. International Journal of Remote Sensing, 29(20), 60296036.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Capital Publishing Company

About this chapter

Cite this chapter

Moshou, D., Gravalos, I., Bravo, D.K.C., Oberti, R., West, J.S., Ramon, H. (2011). Multisensor Fusion of Remote Sensing Data for Crop Disease Detection. In: Thakur, J.K., Singh, S.K., Ramanathan, A., Prasad, M.B.K., Gossel, W. (eds) Geospatial Techniques for Managing Environmental Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1858-6_13

Download citation

Publish with us

Policies and ethics