Skip to main content

System Design and FPGA Implementation for Cognitive Radio Wireless Devices

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 116))

Abstract

System design of devices which support cognitive radio enabled for wireless communications is an area that has attracted a lot of attention in recent years. One of the main goals of designers of such devices is to develop systems that minimize interferences among users. Spectrum, frequencies, user behavior, radio architecture and network state are some of the important parameters that cognitive radio designers need to take into consideration when defining a model for communication system based on cognitive radio. However, the challenge to implement software-based solutions for cognitive radio networks still relies on the underlying hardware implementations. Programmable software-based solutions that implement hardware functions continue to be the emerging design trend because of their various benefits. This chapter reviews the various system design techniques that can be implemented with FPGA devices to support cognitive radio devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sula A, Zhou C (2009) A cooperative scheme for spectrum sensing in cognitive radio systems. J Commun 4(10)

    Google Scholar 

  2. Sklavos N, Zhang X (2007) Wireless security & cryptography: specifications and implementations, CRC-Press, A Taylor and Francis Group, ISBN: 084938771X

    Google Scholar 

  3. Wolf W (2004) FPGA-based system design. Prentice Hall, ISBN-10: 0131424610

    Google Scholar 

  4. Alshamrani A, Shen XS, Xie L-L (2009) A cooperative MAC with efficient spectrum sensing algorithm for distributed opportunistic spectrum networks. J Commun 4(10)

    Google Scholar 

  5. Bostian C, Reed J (2005) Understanding the issues in software defined and cognitive radios. First IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN 2005). Baltimore, USA

    Google Scholar 

  6. Jiao L, Li FY (2009) A dynamic parallel-rendezvous MAC mechanism in multi-rate cognitive radio networks: mechanism design and performance evaluation. J Commun 4(10)

    Google Scholar 

  7. Steenkiste P, Sicker D, Minden G, Raychaudhuri D (2009) Future directions in cognitive radio network research, NSF workshop report, 9–10 Mar 2009

    Google Scholar 

  8. Sklavos N, Zhang X (2007) Wireless security & cryptography: specifications and implementations. CRC Press, A Taylor and Francis Group, ISBN: 084938771X

    Google Scholar 

  9. Sklavos N (2010) On the hardware implementation cost of crypto-processors architectures. Inf Syst Secur 19(2):53–60 The official journal of (ISC)2, A Taylor & Francis Group Publication

    Article  Google Scholar 

  10. Bechtsoudis A, Sklavos (2010) Side channel attacks cryptanalysis against block ciphers based on FPGA devices. In: Proceedings of IEEE Computer Society Annual Symposium on VLSI (IEEE ISVLSI’10), Kefalonia, Greece, 5–7 July 2010

    Google Scholar 

  11. Sklavos N, Touliou K (2007) A system-level analysis of power consumption & optimizations in 3G mobile devices. In: First international conference on new technologies, mobility & security (NTMS’07), Springer, Paris, France, pp 225–235, 2–4 May 2007, ISBN: 9781402062698

    Google Scholar 

  12. Gupta S, Murphy P, Hunter C, Sabharwal A (2010) WARPnet: a platform for deployed cognitive radio experiments. In: Broderson R, Cabric D (eds) Cognitive radio: system design perspective, Springer, New York

    Google Scholar 

  13. Dutta P, Kuo Y-S, Ledeczi A, Schmid T, Volgyesi P (2010) Putting the software radio on a low-calorie diet. Ninth ACM workshop on hot topics in networks (HotNets-IX), Monterey CA, 10/2010

    Google Scholar 

  14. Gustafsson O, Amiri K, Andersson D, Blad A, Bonnet C, Cavallaro JR, Declerck J, Dejonghe A, Eliardsson P, Glasse M, Hayar A, Hollevoet L, Hunter C, Joshi M, Kaltenberger F, Knopp R, Le K, Miljanic Z, Murphy P, Naessens F, Nikaein N, Nussbaum D, Pacalet R, Raghavan P, Sabharwal A, Sarode O, Spasojevic P, Sun Y, Tullberg HM, Vander Aa T, Van der Perre L, Wetterwald M, Wu M (2010) Architectures of cognitive radio testbeds and demonstrators—an overview. In: 5th international conference on cognitive radio oriented wireless networks and communications, Cannes, France, pp 1–6, 9–11 June 2010

    Google Scholar 

  15. Rondeau TW (2007) Application of artificial intelligence to wireless communications. Virginia Tech, Blacksburg Artificial Intelligence, Virginia Polytechnic Institute and State University

    Google Scholar 

  16. Eliardsson P, Andersson D (2009) A modular cognitive radio testbed architecture for dynamic spectrum access. FOI Memo 3040, FOI, Linkoping

    Google Scholar 

  17. Newman TR, Bose T (2009) A cognitive radio network testbed for wireless communication and signal processing education. In: Proceedings of DSP workshop and signal processing education workshop, Marco Island, FL, USA, pp 757–761 Jan 2009

    Google Scholar 

  18. Ettus Research™. http://www.ettus.com/

  19. Python Programming Language. http://www.python.org/

  20. Eurecom, Sophia-Antipolis. http://www.eurecom.fr/index.en.htm

  21. Derudder V et al (2009) A 200 Mbps + 2.14 nJ/b digital baseband multi processor system-on-chip for SDRs. In: Proceedings of VLSI

    Google Scholar 

  22. Mei B, Vernalde S, Verkest D, De Man H, Lauwereins R (2003) ADRES: an architecture with tightly coupled VLIW processor and coarse-grained reconfigurable matrix. Field Program Log Appl 2778:61–70

    Google Scholar 

  23. Wireless Open-Access Research Platform (WARP) Architecture. Available at http://warp.rice.edu/architecture.php

  24. Lotze J, Fahmy SA, Noguera J, Ozgul B, Doyle L, Esser R (2009) Development framework for implementing FPGA-based cognitive network nodes. In: GLOBECOM’09 proceedings of the 28th IEEE conference on global telecommunications

    Google Scholar 

  25. Lotze J, Fahmy SA, Noguera J, Doyle L, Esser R (2008) An FPGA-based cognitive radio framework. In: Proceedings of the IET irish signals and systems conference (ISSC), Galway, Ireland, pp 138–143

    Google Scholar 

  26. Lotze J, Fahmy SA, Noguera J, Doyle LE (2011) A model-based approach to cognitive radio design. IEEE J Sel Areas Commun 29(2)

    Google Scholar 

  27. Lecomte S, Moy C, Leray P (2010) Multi-level modeling an simulation of cognitive radio equipments. SDR’10 wireless innovation conference, Washington DC, USA, 30 Nov–3 Dec 2010

    Google Scholar 

  28. Akter L, Natarajan B (2009) A two-stage power and rate allocation strategy for secondary users in cognitive radio networks. J Commun 4(10)

    Google Scholar 

  29. Moy C, Jouini W, Michael N (2010) Cognitive radio equipments supporting spectrum agility. In: 2010 3rd international symposium on applied sciences in biomedical and communication technologies (ISABEL), Rome, Italy, 7–10 Nov 2010

    Google Scholar 

  30. Lu X, Su X, Zeng J, Wang H (2010) A single FPGA embedded framework for secondary user in cognitive networ. IEEE ICCT2010 Conference, Nanjing, China, 11–14 Nov 2010

    Google Scholar 

  31. Naessens F et al (2010) A 10.37 mm2 675 mW reconfigurable LDPC and turbo encoder and decoder for 802.11n, 802.16e and 3GPP-LTE. In: Proceedings of VLSI

    Google Scholar 

  32. DARPA neXT Generation Program. http://www.sharedspectrum.com/resources/darpa-next-generation-communications-program/

  33. End-to-End Reconfigurability (E2R) Project. Available at http://www.openairinterface.org/projects/page1013/page1034.en.htm

  34. SDR Forum (2008) Working document towards a preliminary draft new report on cognitive radio in land mobile service. Document SDRF-08-R-0001-V1.0.0, 24 Jan 2008

    Google Scholar 

  35. Mitola III J (2000) Cognitive radio: an integrated agent architecture for software defined radio. Royal Institute of Technology (KTH), Teleinformatics, Scientific American. Sweden, pp 66–73, ISSN: 00368733

    Google Scholar 

  36. Papatheodoulou N, Sklavos N (2009) Architecture & system design of authentication, authorization, & accounting services. In: Proceedings of IEEE region 8, EUROCON 2009, international conference (IEEE EUROCON’09), St. Petersburg, Russia, 18–23 May 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Sklavos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kalogeridou, G., Sklavos, N., Kitsos, P. (2012). System Design and FPGA Implementation for Cognitive Radio Wireless Devices. In: Venkataraman, H., Muntean, GM. (eds) Cognitive Radio and its Application for Next Generation Cellular and Wireless Networks. Lecture Notes in Electrical Engineering, vol 116. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1827-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1827-2_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1826-5

  • Online ISBN: 978-94-007-1827-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics