Skip to main content

Interference Modeling, Shaping and Avoidance in Cognitive Wireless Networks

  • Chapter
  • First Online:
Cognitive Radio and its Application for Next Generation Cellular and Wireless Networks

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 116))

Abstract

Opportunistic access to the radio spectrum, enabled by cognitive radios, seems to be the solution to the voracious demand for the statically assigned but highly underutilized radio spectrum. Cognitive radios, benefiting from their advanced features including adaptability and spectrum sensing, can coexist and share the spectrum with licensed radios, under the constraint that their interference remains below a manageable level. In this chapter, using tools from theory of point processes, statistical models are obtained for interference and power control strategies are proposed for interference avoidance. In addition, a cooperative framework is proposed where cognitive radios are assigned the spectrum for a portion of time as remuneration for their assistance in modifying their interference statistics and improving the capacity of primary links. Simulation and analytical results are provided to confirm the accuracy of the analytical derivations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The formal definition of the Poisson point process in a general space requires some background from measure Theory [24].

  2. 2.

    The decision to cooperate or not to cooperate, can be either jointly made by other secondary nodes or by a centralized authority in the secondary network.

References

  1. Schwartz M (2005) Mobile wireless communications. Cambridge University Press, Cambridge

    Google Scholar 

  2. Rappaport TS (2002) Wireless communications: principles and practice, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  3. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 32(2):201–220

    Article  Google Scholar 

  4. Zhao Q, Sadler BM (2007) A survey of dynamic spectrum access. IEEE Signal Process Mag 24(3):79–89

    Article  Google Scholar 

  5. Jabbari B, Pickholtz R, Norton M (2010) Dynamic spectrum access and management. IEEE Wirel Commun Mag 17(4):6–15

    Article  Google Scholar 

  6. Cabric D, Mishra SM, Brodersen RW (2004) Implementation issues in spectrum sensing for cognitive radios. In: Proceedings of the Asilomar conference on signals, systems, and computers, Nov 2004, pp 772–776

    Google Scholar 

  7. Hulbert AP (2005) Spectrum sharing through beacons. In: Proceedings of the 16th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’05), Berlin, pp 989–993, Sep 2005

    Google Scholar 

  8. Ghasemi A, Sousa ES (2008) Interference aggregation in spectrum-sensing cognitive wireless networks. IEEE J Sel Top Signal Process 2(1):41–56

    Article  Google Scholar 

  9. Babaei A, Jabbari B (2010) Interference modeling and avoidance in spectrum underlay cognitive wireless networks. In: Proceedings of ICC, May 2010, pp 1–5

    Google Scholar 

  10. Babaei A, Jabbari B (2008) Internodal distance distribution and power control for coexisting radio networks. In: Proceedings of Globecom, Dec 2008, pp 1–5

    Google Scholar 

  11. Sousa ES, Silvester JA (1990) Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. IEEE J Sel Areas Commun 8(5):762–771

    Article  Google Scholar 

  12. Haenggi M, Andrews JG, Baccelli F, Dousse O, Franceschetti M (2009) Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J Sel Areas Commun 27(7):1029–1046

    Article  Google Scholar 

  13. Gulati K, Evans BL, Andrews JG, Tinsley KR (2010) Statistics of co-channel interference in a field of Poisson and Poisson–Poisson clustered interferers. IEEE Trans Signal Process 58(12):6207–6222

    Article  MathSciNet  Google Scholar 

  14. Wang C, Wong X, Chen H, Thompson J (2009) On capacity of cognitive radio networks with average interference power constraints. IEEE Trans Wirel Commun 8(4):1620–1625

    Article  Google Scholar 

  15. Babaei A, Agrawal P, Jabbari B (2011) Cooperative spectrum sharing for a primary network with capacity constraint. In: Proceedings of IEEE VTC-Spring

    Google Scholar 

  16. Babaei A, Agrawal P, Jabbari B (2010) Statistical shaping of interference to maximize capacity in cognitive random wireless networks. In: Proceedings of Milcom, Oct 2010, pp 714–718

    Google Scholar 

  17. Gupta P, Kumar PR (2000) The capacity of wireless networks. IEEE Trans Inf Theory 46(2):388–404

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang J, Misra S, Xue G (2008) Joint spectrum allocation and scheduling for fair spectrum sharing in cognitive radio wireless networks. Comput Netw 52(11):2148–2158

    Google Scholar 

  19. Ilow J, Hatzinakos D (1998) Analytical alpha-stable noise modeling in a poisson field of interferers or scatterers. IEEE Trans Signal Process 46(6):1601–1611

    Article  Google Scholar 

  20. Cox D (1970) Renewal theory. Methuen & Co., London

    Google Scholar 

  21. Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Arnold, London

    Google Scholar 

  22. Ludwig JA, Reynolds JF (1988) Statistical ecology: a primer on methods and computing. Wiley, New York

    Google Scholar 

  23. Ohser J, Mucklich F (2000) Statistical analysis of microstructures in materials science. Wiley, Chichester

    MATH  Google Scholar 

  24. Fremlin DH (2001) Measure theory. Torres Fremlin, Colchester

    Google Scholar 

  25. Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes: elementary theory and methods, vol 1. Springer, New York

    Google Scholar 

  26. Baddeley A (2007) Spatial point processes and their applications. Lecture notes in mathematics, vol 1892. Springer, Berlin, pp 1–75

    Google Scholar 

  27. Brown TC, Silverman BW, Milne RK (1981) A class of two-type point processes. Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete 58:299–308

    Article  MathSciNet  MATH  Google Scholar 

  28. Paloheimo JE (1972) A spatial bivariate Poisson distribution. Biometrika 59(2):489–492

    Article  MathSciNet  MATH  Google Scholar 

  29. Babaei A, Jabbari B (2010) Distance distribution of bivariate poisson network nodes. IEEE Commun Lett 14(9):848–850

    Google Scholar 

  30. Haenggi M (2005) On distances in uniformly random networks. IEEE Trans Inf Theory 51(10):3584–3586

    Article  MathSciNet  Google Scholar 

  31. Campbell N (1909) The study of discontinuous phenomena. In: Mathematica proceedings of the Cambridge Philosophy Society, vol 15, pp 117–136

    Google Scholar 

  32. Kingman J (1993) Poisson processes. Oxford University Press, Oxford

    Google Scholar 

  33. Middleton D (1976) Statistical–physical models of electromagnetic interference. U.S. Department of Commerce, Office of Telecommunications, Technical Reports

    Google Scholar 

  34. Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes, 4th edn. McGraw Hill, New York

    Google Scholar 

  35. Ihara S (1978) On the capacity of channels with additive non-Gaussian noise. Inf Control 37:34–39

    Article  MathSciNet  MATH  Google Scholar 

  36. Ungerboeck G (1982) Channel coding with multilevel/phase signals. IEEE Trans Inf Theory 28(1):55–67

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Babaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Babaei, A., Agrawal, P., Jabbari, B. (2012). Interference Modeling, Shaping and Avoidance in Cognitive Wireless Networks. In: Venkataraman, H., Muntean, GM. (eds) Cognitive Radio and its Application for Next Generation Cellular and Wireless Networks. Lecture Notes in Electrical Engineering, vol 116. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1827-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1827-2_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1826-5

  • Online ISBN: 978-94-007-1827-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics