Advertisement

Developing a New, Market-Based Land-Use Model

  • Judith Borsboom-van BeurdenEmail author
  • Barry Zondag
Chapter
  • 1.1k Downloads
Part of the GeoJournal Library book series (GEJL, volume 101)

Abstract

This book describes the extensive experience that PBL Netherlands Environmental Assessment Agency and its partners have built up in more than a decade of using land-use models to support policy-making. The land-use models of PBL – Land Use Scanner and Environment Explorer – have in several large studies contributed substantially to the research findings and policy recommendations, making them a standard component of the analytical framework of outlooks where spatial dynamics are essential for sustainability and environmental quality in future. The performance of the models has been evaluated both by PBL and an audit committee of international experts; the findings of the committee are summarised in Chapter 2. The overall conclusion is that the models represent the state of the art for their current practice, but that to enlarge their potential contribution to policy questions and to address new policy challenges a substantial model redesign, or the development of a new model, is needed. Important challenges in doing so would be the inclusion of the behaviour of key actors in the model chain, the inclusion of essential feedback loops between different sectors and geographical scales, the structural inclusion of transport within the land-use model, and a better integration of water management and land use to be able to evaluate spatial adaptation strategies related to climate change. The insights from the different subject-specific research findings have been highlighted and processed to formulate several basic features to be included in the design of a new land-use modelling framework. In this final chapter, we describe the way forward for the development of such a land-use model. After an evaluation of achievements and drawbacks of the current model chain for the support of strategic policy questions, we discuss the ambitions and options for a new land-use model. Subsequently, the various activities carried out to arrive at the general specifications for the new model and the results achieved so far are highlighted.

Keywords

Housing Market Audit Committee Sector Model Micro Model Policy Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atzema, O., Korteweg, P., Lambooy, J., & Van Oort, F. (2009). Factoren achter het ruimtegebruik van werken. Een literatuurverkenning. Utrecht: Utrecht University.Google Scholar
  2. Borsboom, J., & Zondag, B. (2009). Visiedocument modelontwikkeling voor ruimtegebruiks-modellering bij het PBL. Bilthoven: Internal note, PBL.Google Scholar
  3. Borsboom-van Beurden, J. A. M., Boersma, W. T., Bouwman, A. A., Crommentuijn, L. E. M., Dekkers, J. E. C., & Koomen, E. (2005). Ruimtelijke Beelden; Visualisatie van een veranderd Nederland in 2030. RIVM report 550016003. Bilthoven: Milieu- en Natuurplanbureau.Google Scholar
  4. Bröcker, J. (2004). Computable general equilibrium analysis in transportation economics. Chapter 12. In D.A. Hensher, K.J. Button, K.E. Haynes, & P.R. Stopher (Eds.), Handbook of transport geography and spatial systems (pp. 269–289). Elsevier, Amsterdam.Google Scholar
  5. CPB, MNP and RPB (2006). Welvaart en Leefomgeving. Een scenariostudie voor Nederland in 2040. The Hague: Centraal Planbureau, Milieu- en Natuurplanbureau en Ruimtelijk Planbureau.Google Scholar
  6. De Bruijn, K. (2008). Bepalen van schade ten gevolge van overstromingen. Voor verschillende scenario’s en bij verschillende beleidsopties. Deltares, Utrecht: Report in commission of IVM.Google Scholar
  7. De Graaff, T., Van Oort, F. G., & Florax, R. J. G. F. (2009). Sectoral differences in regional population – employment dynamics in the Netherlands. Paper prepared for the North American Regional Science conference, San Francisco.Google Scholar
  8. De Niet, R., & Van Middelkoop, M. (2009). Drijvende krachten achter recreatie en toerisme. Quickscan voor LUMOS 1.0. Internal note. The Hague/Bilthoven: Planbureau voor de Leefomgeving.Google Scholar
  9. Dekkers, J. E. C., & Koomen, E. (2006). De rol van sectorale inputmodellen in ruimtegebruiksimulatie; Onderzoek naar de modellenketen voor de LUMOS toolbox. SPINlab research memorandum SL-05. Amsterdam: Vrije Universiteit.Google Scholar
  10. Delta Committee. (2008). Working together with water. A living land build for its future. Findings of the Delta Commissie 2008. Summary and conclusions.Google Scholar
  11. Ettema, D., Floor, H., & De Jong, T. (2009). Behavioural mechanisms in land use change models. Literature scan. Utrecht: Faculty of Geosciences/Utrecht University.Google Scholar
  12. Groot, A., Moors, E., Vos, C., Vellinga, P., & Opdam, P. (2009). Drijvende krachten achter veranderingen in ruimtegebruik voor de sectoren water en natuur, rapport in opdracht van PBL. Wageningen: University of Wageningen.Google Scholar
  13. Guhathakurta, S. (2003). Advances in urban and environmental modeling: Surveying the terrain and demarcating frontiers. In S. Guhathakurta (Ed.), Integrated land use and environmental models. A survey of current applications and research (pp. 3–12). Berlin: Springer.Google Scholar
  14. Hilferink, M., & Grashoff, P. (2009). ICT aspecten Lumos 2.0 ontwikkeling. Object Vision and Demis.Google Scholar
  15. Jacobs, C. (2010). De drijvende kracht van mobiliteit. Achtergrondstudie bij de vervaardiging van een nieuw LUMOS model. Amsterdam: VU University.Google Scholar
  16. Koomen, E., Kuhlman, T., Groen, J., & Bouwman, A. A. (2005). Simulating the future of agricultural land use in The Netherlands. Tijdschrift voor Economische en Sociale Geografie (Journal of Economic and Social Geography), 96(2), 218–224.CrossRefGoogle Scholar
  17. Kuijpers-Linde, M., & Koomen, E. (2009). Beleidsvragen en indicatoren voor een nieuw ruimtegebruiksmodel, In opdracht van het Planbureau voor de Leefomgeving. Amsterdam: Geodan Next.Google Scholar
  18. Ligtenberg, A. (2006). Exploring the use of multi-agent systems for interactive multi-actor spatial planning. Wageningen: Thesis Wageningen University.Google Scholar
  19. Miller, E. J., Kriger, D. S., & Hunt, J. D. (1998). Integrated urban models for simulation of transit and land-use policies. Final Report TCRP Web Document 9, University of Toronto.Google Scholar
  20. MNP (2007). Nederland Later; Tweede Duurzaamheidsverkenning deel fysieke leefomgeving Nederland. MNP-publicatienr.500127001/2007. Bilthoven: Milieu- en Natuurplanbureau.Google Scholar
  21. MNP (2004a). Quality and the future. Sustainability outlook. Bilthoven: Milieu- en Natuurplanbureau.Google Scholar
  22. MNP (2004b). Milieu- en Natuureffecten Nota Ruimte, RIVM-rapport 711931009, RIVM, Bilthoven.Google Scholar
  23. Oosterhaven, J., Knaap, T., Ruigrok, C., & Tavasszy, L. (2001). On the development of RAEM: the Dutch spatial general equilibrium model and its first application to a new railway link. Proceedings 41st Congress of the European Regional Science Association, Zagreb, Croatia.Google Scholar
  24. PBL (2010). The Netherlands in the future. Second sustainability outlook: The physical living environment in the Netherlands. Bilthoven: Netherlands Environmental Assessment Agency (PBL).Google Scholar
  25. Priemus, H., & Hoekstra, J. (2009). Drijvende krachten achter woningvraag en ruimtegebruik wonen. Achtergrondstudie in opdracht van het Planbureau voor de Leefomgeving. Onderzoeksinstituut OTB/Technische Universiteit Delft.Google Scholar
  26. Rijken, B. (2009). De impact van energie als drijvende kracht van ruimtegebruiksveranderingen. PBL, Bilthoven: Literature Scan. Internal PBL note.Google Scholar
  27. RIVM (1997). Nationale Milieuverkenning 1997–2020. Bilthoven: Rijksinstituut voor Volksgezondheid en Milieu.Google Scholar
  28. RIVM and Stichting DLO. (2001). Who is afraid of red, green and blue? Toets van de Vijfde Nota Ruimtelijke Ordening op ecologische effecten, RIVM-rapportnr. 711931005, Wilco BV, Amersfoort.Google Scholar
  29. RIVM and Stichting DLO. (2002). National nature outlook 2: 2000–2030. Summary. Bilthoven: RIVM.Google Scholar
  30. RPB/CBS (2005). Achtergonden en verondertsellingen bij het model PEARL – Naar een nieuwe regionale bevolkings- en allochtonenprognose, NAi Uitgeverij Rotterdam.Google Scholar
  31. Salvini, P., & Miller, E. J. (2005). ILUTE: An operational prototype of a comprehensive microsimulation model of urban systems. Networks and Spatial Economics, 5, 217–234.CrossRefGoogle Scholar
  32. Simmonds, D. (1999). The design of the Delta land-use modelling package. Environment and Planning B: Planning and Design, 26, 665–684.CrossRefGoogle Scholar
  33. Simmonds, D. C., & Echenique, M. (1999). DETR report, Review of land use/transport interaction models, London.Google Scholar
  34. Timmermans, H. (2007). Welvaart en Leefomgeving: reflectie op scenario ontwikkeling. Internal report. Technical University Eindhoven.Google Scholar
  35. Van Bruchem, C., & Silvis, H. (2009). Drijvende krachten toekomstig landgebruik landbouw. The Hague: LEI.Google Scholar
  36. Van Wissen, L. (2000). A micro-simulation model of firms: Applications of concepts of the demography of the firm. Papers of Regional Science, 79(2), 111–134.CrossRefGoogle Scholar
  37. Van de Velde, R. J., Schotten, C. G. J., Van der Waals, J. F. M., Boersma, W. T., Ouwersloot, H., & Ransijn, M. (1997). Ruimteclaims en ruimtelijke ontwikkelingen in de zoekgebieden voor de toekomstige nationale luchtinfrastructuur (TNLI). Quickscan met de Ruimtescanner. RIVM-rapport 711901024. Bilthoven: RIVM.Google Scholar
  38. Verburg, P., & Overmars, K. (2009). Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology, 24, 1167–1181.CrossRefGoogle Scholar
  39. VROM (2008). Randstad towards 2040, summary of the structural vision. The Hague: Ministry of Housing, Spatial Planning and the Environment.Google Scholar
  40. Wagner, P., & Wegener, M. (2007). Urban land use, transport and environment models – experiences with an Integrated Microscopic Approach.Google Scholar
  41. Wegener, M. (2004). Overview of land use transport models. Chapter 9. In D.A. Hensher, K.J. Button, K.E. Haynes, & P.R. Stopher (Eds.), Handbook of transport geography and spatial systems (pp. 127–146). Elsevier, Amsterdam.Google Scholar
  42. Weidner, T., Donelly, R., Freedman, J., Abraham, J. E., & Hunt, J. D. (2006). TLUMIP – transport and land use model in Portland – current state, Stadt Region Land 81, Aachen: institute fur Stadtbauwesen und stadtverkehr, RWTH Aachen, pp. 91–102.Google Scholar
  43. Zondag, B. (2007). Joint modeling of land-use, transport and economy, PhD thesis TRAIL thesis series nr. T2007/4, Delft University of Technology, Delft.Google Scholar
  44. Zondag, B., & Borsboom, J. (2009). Driving forces of land-use change. Paper prepared for the 49th ERSA conference August 2009, Lodz, Poland.Google Scholar
  45. Zondag, B., & Pieters, M. (2001). Literature Review of Land-Use model, prepared by RAND Europe for the Transportation Research Centre of the Netherlands Ministry of Transport, Public Works and Water Management, Leiden.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.TNO Behavioural and Societal SciencesDelftThe Netherlands
  2. 2.PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands

Personalised recommendations