Skip to main content

Applications of Nanotechnology to the Brain and Central Nervous System

  • Chapter
  • First Online:

Part of the book series: Yearbook of Nanotechnology in Society ((YNTS,volume 3))

Abstract

In Reshaping the Human Condition: Exploring Human Enhancement, a recent report by the Rathenau Institute, in collaboration with the British Embassy in the Hague and the UK Parliamentary Office of Science and Technology, Professor the Lord Winston, Professor of Science and Society at Imperial College dismisses any concern about the application of nanotechnology research to the field of neuroscience as too nascent and inconclusive (Zonneveld et al. 2008). No other mention of nanotechnology occurs in the report. This view is common. In informal conversations with a number of leading researchers in the field of neural prosthetics, our colleague found little knowledge of nanotechnology or expectation that it would have any significant impact on the field for the near future. Current neural prosthetics technologies operate at the micrometer scale range, at the smallest, and this was deemed as sufficient for the design of neural implant devices (Robert, personal communication). Imagine our surprise, then, when a search of Web of Science generated over 10,000 research articles at the intersection of nanotechnology and neuroscience.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.thevantagepoint.com/

References

  • Barben, D. 2008. Anticipatory governance of nanotechnology: Foresight, engagement, and integration. In The handbook of science and technology studies, 3rd ed, ed. Edward J. Hackett, Olga Amsterdamska, Michael Lynch, and Judy Wajcman. Cambridge: MIT Press.

    Google Scholar 

  • Biral, D., et al. 2008. Atrophy-resistant fibers in permanent peripheral denervation of human skeletal muscle. Neurological Research 30(2): 137–144.

    Article  Google Scholar 

  • Bouzigues, C., et al. 2004. Tracking of single GABA receptors in nerve growth cones using organic dyes and quantum dots. Biophysical Journal 86(1): 602A.

    Google Scholar 

  • Bouzigues, C., et al. 2007. Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging. Proceedings of the National Academy of Sciences 104(27): 11251–11256.

    Article  Google Scholar 

  • Brors, D., et al. 2002. Interactions of spiral ganglion neuron processes with alloplastic materials in vitro. Hearing Research 167(1–2): 110–121.

    Article  Google Scholar 

  • Cai, W., et al. 2006. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters 6(4): 669–674.

    Article  Google Scholar 

  • Chakrabortty, S., et al. 2000. Choroid plexus ependymal cells enhance neurite outgrowth from dorsal root ganglion nerves in vitro. Journal of Neurocytology 29(1): 707–717.

    Article  Google Scholar 

  • Chapman, S., et al. 2008. New tools for in vivo fluorescence tagging. Current Opinion in Plant Biology 8(6): 565–573.

    Article  Google Scholar 

  • Christie, J., and U. Kompella. 2008. Ophthalmic light sensitive nanocarrier systems. Drug Discovery Today 13(3–4): 124–134.

    Article  Google Scholar 

  • Cui, B., et al. 2007. One at a time, live tracking of NGF axonal transport using quantum dots. Proceedings of the National Academy of Sciences 104(34): 13666–13671.

    Article  Google Scholar 

  • Echarte, M., et al. 2007. Quantitative single particle tracking of NGF-receptor complexes: Transport is bidirectional but biased by longer retrograde run lengths. FEBS Letters 581(16): 2905–2913.

    Article  Google Scholar 

  • Farias, P., et al. 2006. Application of colloidal semiconductor quantum dots as fluorescent labels for diagnosis of brain glial cancer. In Colloidal quantum dots for biomedical applications. Bellingham: ISOE.

    Google Scholar 

  • Farias, P., et al. 2008. Fluorescent II-VI semiconductor quantum dots: Potential tools for biolabeling and diagnostic. Journal of the Brazilian Chemical Society 19(2): 352–356.

    Article  Google Scholar 

  • Ferrari, M. 2005. Cancer nanotechnology: Opportunities and challenges. Nature Reviews. Cancer 5(3): 161–167.

    Article  Google Scholar 

  • Glueckert, R., et al. 2005. The human spiral ganglion: New insights into ultrastructure, survival rate, and implications for cochlear implants. Audiology & Neuro-Otology 10(5): 258–273.

    Article  Google Scholar 

  • Gomez, N., et al. 2005. Challenges in quantum dot-neuron active interfacing. Talanta 67(3): 462–471.

    Article  Google Scholar 

  • Greve, F., et al. 2007. Molecular design and characterization of the neuron-microelectrode array interface. Biomaterials 28(35): 5246–5258.

    Article  Google Scholar 

  • Halberstadt, C., et al. 2006. Combining cell therapy and nanotechnology. Expert Opinion on Biological Therapy 6(1): 781–791.

    Article  MathSciNet  Google Scholar 

  • Howarth, M., et al. 2008. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nature Methods 5(5): 397–399.

    Article  Google Scholar 

  • Hu, Z., et al. 2006. Nanopowder molding method for creating implantable high aspect ratio electrodes on thin flexible substrates. Biomaterials 27(9): 2009–2017.

    Article  Google Scholar 

  • Ji, X., et al. 2006. An alternative approach to amyloid fibrils morphology: CdSe/ZnS quantum dots labeled beta-amyloid peptide fragments A beta (31-35), A beta (1-40), and A beta (1-42). Colloids and Surfaces. B, Biointerfaces 50(2): 104–111.

    Article  Google Scholar 

  • Johansson, F., et al. 2005. Guidance of neurons on porous, patterned silicon: Is pore size important? Physica Status Solidi C 9: 3258–3262.

    Article  Google Scholar 

  • Johansson, F., et al. 2006. Axonal outgrowth on nano-imprinted patterns. Biomaterials 27(8): 1251–1258.

    Article  Google Scholar 

  • Liang, R., et al. 2005. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Research 33(2): 8.

    Article  Google Scholar 

  • Liopo, A., et al. 2006. Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. Journal of Nanoscience and Nanotechnology 6(5): 1365–1374.

    Article  Google Scholar 

  • Liu, K., et al. 2008. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. Nanotechnology 19(20).

    Google Scholar 

  • Mazzatenta, A., et al. 2007. Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits. Journal of Neuroscience 27(26): 6931–6936.

    Article  Google Scholar 

  • McKnight, T., et al. 2006. Resident neuroelectrochemical interfacing using carbon nanofiber arrays. The Journal of Physical Chemistry. B 110(31): 15317–15327.

    Article  Google Scholar 

  • Mlynski, R., et al. 2007. Interaction of cochlear nucleus explants with semiconductor materials. Laryngoscope 177(7): 1216–1222.

    Article  Google Scholar 

  • Moxon, K., et al. 2004. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. IEEE Transactions on Biomedical Engineering 51(6): 881–889.

    Article  Google Scholar 

  • Nazem, Amir, and G. Ali Mansoori. 2008. Nanotechnology solutions for alzheimer’s disease: Advances in research tools, diagnostic methods and therapeutic agents. Journal of Alzheimer’s Disease 13: 199–223.

    Google Scholar 

  • O’Connell, K., et al. 2006. Kv2.1 potassium channels are retained within dynamic cell surface micro domains that are defined by a perimeter fence. Journal of Neuroscience 26(38): 9609–9618.

    Article  Google Scholar 

  • Pawlowki, K., et al. 2005. Bacterial biofilm formation on a human cochlear implant. Otology & Neurotology 26(5): 972–975.

    Article  Google Scholar 

  • Porter, A., and J. Youtie. 2009. How interdisciplinary is nanotechnology? Journal of Nanoparticle Research 11(5): 1023–1041.

    Article  Google Scholar 

  • Porter, A., J. Youtie, P. Shapira, and D. Schoeneck. 2008. Refining search terms for nanotechnology. Journal of Nanoparticle Research 10(5): 715–728.

    Article  Google Scholar 

  • Raffa, V., et al. 2007. Design criteria of neuron/electrode interface: The focused ion beam technology as an analytical method to investigate the effect of electrode surface morphology on neurocompatibility. Biomedical Microdevices 9(3): 371–383.

    Article  Google Scholar 

  • Rajan, S., and T. Vu. 2006. Quantum dots monitor TrkA receptor dynamics in the interior of neural PC12 cells. Nano Letters 6(9): 2049–2059.

    Article  Google Scholar 

  • Rochkind, S., et al. 2006. Development of a tissue-engineered composite implant for treating traumatic paraplegia in rats. European Spine Journal 15(2): 234–245.

    Article  Google Scholar 

  • Sarje, A., and N. Thakor. 2004. Neural interfacing. In Conference Proceedings: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE.

    Google Scholar 

  • Sclove, R. 1995. Democracy and technology. New York: Guilford Press.

    Google Scholar 

  • Selvakumaran, J., et al. 2002. Assessing biocompatibility of materials for implantable microelectrodes using cytotoxicity and protein adsorption studies. In Proceedings of the 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Piscataway: IEEE.

    Google Scholar 

  • Silva, G. 2006. Neuroscience nanotechnology: Progress, opportunities, and challenges. Nature Reviews Neuroscience 7: 65–74.

    Article  Google Scholar 

  • Tator, C. 1995. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathology 5(4): 407–413.

    Article  Google Scholar 

  • Tomlinson, I. 2006. High affinity inhibitors of the dopamine transporter (DAT): Novel biotinylated ligands for conjugation to quantum dots. Bioorganic and Medical Chemistry Letters 16(17): 4664–4667.

    Article  Google Scholar 

  • Toms, S., et al. 2006. Neuro-oncological applications of optical spectroscopy. Technology in Cancer Research & Treatment 5(3): 231–238.

    Google Scholar 

  • Trabandt, N., et al. 2005. Limitations of titanium dioxide and aluminum dioxide as ossicular replacement materials: An evaluation of the effects of porosity on ceramic prostheses. Otology & Neurotology 25(5): 682–693.

    Article  Google Scholar 

  • Tsai, C., et al. 2008. High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell imaging probe. Small 4(2): 186–191.

    Article  Google Scholar 

  • Voss, J., D. Bauknecht, and R. Kemp. 2006. Reflexive governance for sustainable development. Cheltenham: Edward Elgar.

    Google Scholar 

  • Wang, J., et al. 2005. A fluorescence microscopy study of quantum dots as fluorescent probes for brain tumor diagnosis. In Plasmonics in biology and medicine II. Bellingham: ISOE.

    Google Scholar 

  • Wang, X., et al. 2008. Application of nanotechnology in cancer therapy and imaging. CA: A Cancer Journal for Clinicians 58(2): 97–110.

    Article  Google Scholar 

  • Werner, H., et al. 2007. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. Journal of Neuroscience 27(29): 7717–7730.

    Article  Google Scholar 

  • Wickramanayake, W., et al. 2005. Controlled photostimulation of neuron cells and activation of calcium ions on semiconductor quantum dot layer-by-layer assemblies. In 2005 AIChE Annual Meeting and Fall Showcase, Conference Proceedings. New York: AIChE.

    Google Scholar 

  • Widge, A., et al. 2004. Conductive polymer ‘Molecular Wires’ for neuro-robotic interfaces. In Proceedings of the 2004 IEEE Conference on Robotics and Automation. Piscataway: IEEE.

    Google Scholar 

  • Wilsdon, J., and R. Willis. 2004. See through science: Why public engagement needs to move upstream. London: Demos.

    Google Scholar 

  • Wrobel, G., et al. 2008. Transmission electron microscopy study of the cell-sensor interface. Journal of the Royal Society, Interface 5(10): 222–231.

    MathSciNet  Google Scholar 

  • Yamamoto, S., et al. 2007. Visualizing vitreous using quantum dots as imaging agents. IEEE Transactions on Nanobioscience 6(1): 94–98.

    Article  Google Scholar 

  • Zonneveld, L., H. Dijstelbloem, and D. Ringoir. 2008. Reshaping the human condition: Exploring human enhancement. The Hague: Rathenau Institute.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark A. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nulle, C., Miller, C.A., Porter, A., Gandhi, H.S. (2013). Applications of Nanotechnology to the Brain and Central Nervous System. In: Hays, S., Robert, J., Miller, C., Bennett, I. (eds) Nanotechnology, the Brain, and the Future. Yearbook of Nanotechnology in Society, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1787-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1787-9_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1786-2

  • Online ISBN: 978-94-007-1787-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics