Skip to main content

Ionanofluids: New Heat Transfer Fluids for Green Processes Development

  • Chapter
  • First Online:
Green Solvents I

Abstract

Ionanofluids represent a new and innovative class of heat transfer fluids that encompass multiple disciplines like nanoscience, mechanical, and chemical engineering. Apart from fascinating thermophysical properties, the most compelling feature of ionanofluids is that they are designable and fine-tunable through base ionic liquids. Besides presenting results on thermal conductivity and specific heat capacity of ionanofluids as a function of temperature and concentration of multiwall carbon nanotubes, findings from a feasibility study of using ionanofluids as replacement of current silicon-based heat transfer fluids in heat transfer devices such as heat exchangers are also reported. By comparing results on thermophysical properties and estimating heat transfer areas for both ionanofluids and ionic liquids in a model shell and tube heat exchanger, it is found that ionanofluids possess superior thermophysical properties particularly thermal conductivity and heat capacity and require considerably less heat transfer areas as compared to those of their base ionic liquids. This chapter is dedicated to introducing, analyzing, and discussing ionanofluids together with their thermophysical properties for their potential applications as heat transfer fluids. Analyzing present results and other findings from pioneering researches, it is found that ionanofluids show great promises to be used as innovative heat transfer fluids and novel media for the exploitation of green energy technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribeiro APC, Lourenço MJV, Nieto de Castro CA (2009) Thermal conductivity of ionanofluids. In: 17th symposium on thermophysical properties, Boulder, USA, 2009

    Google Scholar 

  2. Nieto de Castro CA, Lourenço MJV, Ribeiro APC, Langa E, Vieira SIC, Goodrich P, Hardacre C (2010) Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids. J Chem Eng Data 55:653–661

    Article  CAS  Google Scholar 

  3. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 231:99–105

    CAS  Google Scholar 

  4. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289

    Article  CAS  Google Scholar 

  5. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44:367–373

    Article  CAS  Google Scholar 

  6. Murshed SMS, Leong KC, Yang C (2006) Determination of the effective thermal diffusivity of nanofluids by the double hot-wire technique. J Phys D Appl Phys 39:5316–5322

    Article  CAS  Google Scholar 

  7. Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568

    Article  CAS  Google Scholar 

  8. Murshed SMS, Leong KC, Yang C (2008) Thermophysical and electrokinetic properties of nanofluids – a critical review. Appl Therm Eng 28:2109–2125

    Article  CAS  Google Scholar 

  9. Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432–460

    Article  CAS  Google Scholar 

  10. You SM, Kim JH, Kim KM (2003) Effect of nanoparticles on critical heat flux of water in pool boiling of heat transfer. Appl Phys Lett 83:3374–3376

    Article  CAS  Google Scholar 

  11. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188

    Article  CAS  Google Scholar 

  12. Wen D, Ding Y (2005) Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids. J Nanopart Res 7:265–274

    Article  CAS  Google Scholar 

  13. Bang IC, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419

    Article  CAS  Google Scholar 

  14. Heris SZ, Etemad SG, Esfahany MS (2006) Experimental investigation of oxide nanofluids under laminar flow convective heat transfer. Int Commun Heat Mass Transf 33:529–535

    Article  Google Scholar 

  15. Murshed SMS, Leong KC, Yang C, Nguyen NT (2008) Convective heat transfer characteristics of aqueous TiO2 nanofluids under laminar flow conditions. Int J Nanosci 7:325–331

    Article  CAS  Google Scholar 

  16. Murshed SMS, Milanova D, Kumar R (2009) An experimental study of surface tension-dependent pool boiling characteristics of carbon nanotubes-nanofluids. In: Proceedings of 7th ASME international conference on nanochannels, microchannels and minichannels, Pohang, Korea, 2009

    Google Scholar 

  17. Choi SUS, Zhang Z, Yu W, Lockwood F, Grulke E (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  CAS  Google Scholar 

  18. Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250

    Article  CAS  Google Scholar 

  19. Murshed SMS, Nieto de Castro CA, Lourenço MJV, Lopes MLM, Santos FJV (2011) A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev 15:2342–2354

    Article  CAS  Google Scholar 

  20. Ribeiro APC, Lourenço MJV, Nieto de Castro CA, Hardacre C (2008) Thermal conductivity of “Buck Gels”. In: Proceedings conference on molten salts and ionic liquids (EUCHEM2008), Copenhagen, Denmark, 2008

    Google Scholar 

  21. Seddon KR (2003) Ionic liquids – a taste of the future. Nature 2:363–365

    Article  CAS  Google Scholar 

  22. Marsh KN, Boxall JA, Lichtenthaler R (2004) Room temperature ionic liquids and their mixtures – a review. Fluid Phase Equilibr 219:93–98

    Article  CAS  Google Scholar 

  23. Zhang S, Sun N, He X, Lu X, Zhang X (2006) Properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35:1475–1517

    Article  CAS  Google Scholar 

  24. Keskin S, Kayrak-Talay D, Akman U, Hortacsu O (2007) A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluid 43:150–180

    Article  CAS  Google Scholar 

  25. Earle M, Seddon KR (2007) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391–1398

    Article  Google Scholar 

  26. Holbrey J (2007) Heat capacities of common ionic liquids – potential applications as thermal fluids. Chimica Oggi/Chem Today 25:24–26

    Google Scholar 

  27. Wasserscheid P, Welton T (2007) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  28. Gaune-Escard M, Seddon KR (2009) Molten salts and ionic liquids: never the twain. Wiley, Hoboken

    Google Scholar 

  29. Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem B 18:275–297

    Article  CAS  Google Scholar 

  30. Heintz A, Wertz C (2006) Ionic liquids: a most promising research field in solution chemistry and thermodynamics. Pure Appl Chem 78:1587–1593

    Article  CAS  Google Scholar 

  31. Nieto de Castro CA, Santos FJV (2007) Measurement of ionic liquids properties. Are we doing it well? Chimica Oggi/Chem Today 25:20–23

    Google Scholar 

  32. França J, Nieto de Castro CA, Lopes MLM, Nunes VMB (2009) Influence of thermophysical properties of ionic liquids in chemical process design. J Chem Eng Data 54:2569–2575

    Article  Google Scholar 

  33. Nunes VMB, Lourenço MJV, Santos FJV, Lopes MLM, Nieto de Castro CA (2010) Accurate measurements of physico-chemical properties on ionic liquids and molten salts. In: Seddon KR, Gaune-Escard M (eds) Ionic liquids and molten salts: never the twain. Wiley, Hoboken

    Google Scholar 

  34. Nieto de Castro CA, Langa E, Morais AL, Lopes MLM, Lourenço MJV, Santos FJV, Santos MSCS, Lopes JSL, Veiga HIM, Macatrão M, Esperança JMSS, Rebelo LPN, Marques CS, Afonso CAM (2010) Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [aliquat][dca]. Fluid Phase Equilibr 294:157–179

    Article  CAS  Google Scholar 

  35. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074

    Article  CAS  Google Scholar 

  36. Fukushima T, Aida T (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chem-Eur J 13:5048–5058

    Article  CAS  Google Scholar 

  37. Vieira SIC, Ribeiro APC, Lourenço MJV, Nieto de Castro CA (2011) Paints with ionanofluids as pigments for improvement of heat transfer on architectural and heat exchangers surfaces. In: Proceedings of the 25th European symposium on applied thermodynamics, Saint Petersburg, Russia, 2011

    Google Scholar 

  38. Lide DR (2007) CRC handbook of chemistry and physics. Taylor & Francis, Boca Raton

    Google Scholar 

  39. França J (2010) Propriedades térmicas de ionanofluidos (Thermal properties of ionanofluids). MSc thesis, Faculdade de Ciências da Universidade de Lisboa, Portugal

    Google Scholar 

  40. Holbrey J, Seddon K, Wareing R (2001) A simple colorimetric method for the quality control of 1-alkyl-3-methylimidazolium ionic liquid precursors. Green Chem 3:33–36

    Article  CAS  Google Scholar 

  41. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, London

    Google Scholar 

  42. Ge R, Hardacre C, Nancarrow P, Rooney D (2007) Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. J Chem Eng Data 52:1819–1823

    Article  CAS  Google Scholar 

  43. Nieto de Castro CA, Lourenço MJV, Sampaio MO (2000) Calibration of a DSC: its importance for the traceability and uncertainty of thermal measurements. Thermochimica Acta 347:85–91

    Article  CAS  Google Scholar 

  44. Lourenço MJV, Santos FJV, Ramires MLV, Nieto de Castro CA (2006) Isobaric specific heat capacity of water and aqueous cesium chloride solutions for temperatures between 298 K and 370 K at p  =  0.1 MPa. J Chem Thermodyn 38:970–974

    Article  Google Scholar 

  45. Xie H, Lee H, Youn W, Choi M (2003) Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys 94:4967–4971

    Article  CAS  Google Scholar 

  46. Amrollahi A, Rashidi AM, Emani MM, Kashefi K (2009) Conduction heat transfer characteristics and dispersion behaviour of carbon nanofluids as a function of different parameters. J Exp Nanosci 4:347–363

    Article  CAS  Google Scholar 

  47. Venerus DC, Kabadi MS, Lee S, Perez-Luna V (2006) Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys 100:094310–1–094310–5

    Article  Google Scholar 

  48. Nieto de Castro CA, Lourenço MJV, Murshed SMS, Vieira SI, França J, Queiros CS, Ribeiro APC (2010) Ionanofluids: new heat transfer fluids for thermal efficiency design. In: Proceedings of the 9th Asian thermophysical properties conference, Beijing, China, 2010

    Google Scholar 

  49. Ge R, Hardacre C, Jacquemin J, Nancarrow P, Rooney D (2008) Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. Measurement and prediction. J Chem Eng Data 53:2148–2153

    Article  CAS  Google Scholar 

  50. Mendonça AJF, Nieto de Castro CA, Assael MJ, Wakeham WA (1981) The economic advantages of accurate transport property data for heat transfer equipment design. Rev Port Quím 23:7–11

    Google Scholar 

  51. Lopes MLM, Nieto de Castro CA, Wakeham WA (1985) The effect of uncertainty in diffusion coefficients in the design of packed columns. In: Proceedings of the international chemical engineering conference, Coimbra, Portugal

    Google Scholar 

  52. Nunes VMB, Lourenço MJV, Santos FJV, Nieto de Castro CA (2003) The importance of the accurate data on viscosity and thermal conductivity in molten salts applications. J Chem Eng Data 48:446–450

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank FCT-Fundação para a Ciência e Tecnologia, Portugal, for financial support under grant PTDC/EQU-FTT/104614/2008 for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Nieto de Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

de Castro, C.A.N., Murshed, S.M.S., Lourenço, M.J.V., Santos, F.J.V., Lopes, M.L.M., França, J.M.P. (2012). Ionanofluids: New Heat Transfer Fluids for Green Processes Development. In: Mohammad, A. (eds) Green Solvents I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1712-1_8

Download citation

Publish with us

Policies and ethics