Skip to main content

Green Solvents for Biocatalysis

  • Chapter
  • First Online:
Green Solvents I

Abstract

In order to comply with environmental regulations, the agrochemical, the pharmaceutical, and other biotech-based industries are impelled to implement sustainable industrial technologies. To achieve this, the use of biocatalysts (enzymes or cells), leading to high chemo-, regio-, and stereoselectivities under mild conditions, as well as green nonaqueous solvents required to solubilize substrates that are poorly soluble in water, appear as good solutions. In this chapter we will focus on different attempts to combine the properties of green solvents with the advantages of using enzymes for developing biocatalytic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armor JN (1999) Striving for catalytically green processes in the 21st century. Appl Catal A 189:153–162

    Article  CAS  Google Scholar 

  2. Curzons AD, Constable DJC, Mortimer DN et al (2001) So you think your process is green, how do you know? Using principles of sustainability to determine what is green—a corporate perspective. Green Chem 3:1–6

    Article  CAS  Google Scholar 

  3. Diwekar U (2005) Green process design, industrial ecology, and sustainability: a systems analysis perspective. Resour Conserv Recycl 44:215–235

    Article  Google Scholar 

  4. Segars JW, Bradfield SL, Wright JJ et al (2003) EcoWorx, green engineering principles in practice. Environ Sci Technol 37:5269–5277

    Article  CAS  Google Scholar 

  5. Jiménez-González C, Constable DJC, Curzons AD et al (2002) Developing GSK’s green technology guidance: methodology for case-scenario comparison of technologies. Clean Technol Environ Policy 4:22–53

    Google Scholar 

  6. Little AD (2001) Making EHS an integral part of process design. Wiley-AIChE, New York

    Google Scholar 

  7. Horváth IT, Anastas PT (2007) Introduction: green chemistry. Chem Rev 107:2167–2168

    Article  CAS  Google Scholar 

  8. Horváth IT, Anastas PT (2007) Innovations and green chemistry. Chem Rev 107:2169–2173

    Article  CAS  Google Scholar 

  9. Sheldon RA (2007) The E-factor: 15 years on. Green Chem 9:1273–1283

    Article  CAS  Google Scholar 

  10. Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 7:3352–3365

    Article  CAS  Google Scholar 

  11. Beach EV, Cui Z, Anastas PT (2009) Green chemistry: a design framework for sustainability. Energy Environ Sci 2:1038–1049

    Article  CAS  Google Scholar 

  12. Tucker JL (2006) Green chemistry, a pharmaceutical perspective. Org Process Res Dev 10:315–319

    Article  CAS  Google Scholar 

  13. Calvo-Flores FG (2009) Sustainable chemistry metrics. ChemSusChem 2:905–919

    Article  CAS  Google Scholar 

  14. Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. Environ Sci Technol 37:95–101

    Google Scholar 

  15. Manley JB, Anastas PT, Cue BW Jr (2008) Frontiers in green chemistry: meeting the grand challenges for sustainability in R&D and manufacturing. J Clean Prod 16:743–750

    Article  Google Scholar 

  16. Andraos J (2009) Global green chemistry metrics analysis algorithm and spreadsheets: evaluation of the material efficiency performances of synthesis plans for Oseltamivir phosphate (Tamiflu) as a test case. Org Process Res Dev 13:161–185

    Article  CAS  Google Scholar 

  17. Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26:321–327

    Article  CAS  Google Scholar 

  18. Jiménez-González C, Curzons AD, Constable DJC et al (2005) Expanding GSK’s solvent selection guide—application of life cycle assessment to enhance solvent selections. Clean Technol Environ Policy 7:42–50

    Article  CAS  Google Scholar 

  19. Hernáiz M, Alcántara A, García J, Sinisterra J (2010) Applied biotransformations in green solvents. Chem Eur J 16:9422–9437

    Article  CAS  Google Scholar 

  20. Lee MY, Dordick JS (2002) Enzyme activation for nonaqueous media. Curr Opin Biotechnol 13:376–384

    Article  CAS  Google Scholar 

  21. Serdakowski AL, Dordick JS (2008) Enzyme activation for organic solvents made easy. Trends Biotechnol 26:48–54

    Article  CAS  Google Scholar 

  22. Kim PY, Pollard DJ, Woodley JM (2007) Substrate supply for effective biocatalysis. Biotechnol Prog 23:74–82

    Article  CAS  Google Scholar 

  23. Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282

    Article  CAS  Google Scholar 

  24. Leitner W (2009) Green solvents—progress in science and application. Green Chem 11:603–1603

    Article  CAS  Google Scholar 

  25. Wang Z (2007) The potential of cloud point system as a novel two-phase partitioning system for biotransformation. Appl Microbiol Biotechnol 75:1–10

    Article  CAS  Google Scholar 

  26. Clark JH, Tavener SJ (2007) Alternative solvents: shades of green. Org Process Res Dev 11:149–155

    Article  CAS  Google Scholar 

  27. Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278

    Article  CAS  Google Scholar 

  28. Manahan SE (2006) Green chemistry and the ten commandments of sustainability, 2nd edn. ChemChar Research, Inc, Columbia

    Google Scholar 

  29. Engberts JBFN (2007) Structure and properties of water. In: Lindström UM (ed) Organic reactions in water: principles, strategies and applications. Blackwell Publishing, Oxford

    Google Scholar 

  30. Illanes A (2008) Introduction. In: Illanes A (ed) Enzyme biocatalysis―principles and applications. Springer, New York

    Google Scholar 

  31. Frauenfelder H, Chen G, Berendzen J et al (2009) A unified model of protein dynamics. Proc Natl Acad Sci USA 106:5129–5134

    Article  CAS  Google Scholar 

  32. Clark DS (2004) Characteristics of nearly dry enzymes in organic solvents: implications for biocatalysis in the absence of water. Philos Trans R Soc Lond B 359:1299–1307

    Article  CAS  Google Scholar 

  33. Lozano P (2010) Enzymes in neoteric solvents: from one-phase to multiphase systems. Green Chem 12:555–569

    Article  CAS  Google Scholar 

  34. Adlercreutz P (2008) Fundamentals of biocatalysis in neat organic solvents. In: Carrea G, Riva S (eds) Organic synthesis with enzymes in non-aqueous media. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  35. Adamczak M, Krishna SH (2004) Enzyme for efficient biocatalysis. Food Technol Biotechnol 42:251–264

    CAS  Google Scholar 

  36. Xia X, Wang C, Yang B et al (2009) Water activity dependence of lipases in non-aqueous biocatalysis. Appl Biochem Biotechnol 3:759–767

    Article  CAS  Google Scholar 

  37. Zaks A, Klibanov AM (1988) Enzymatic catalysis in nonaqueous solvent. J Biol Chem 263:3194–3201

    CAS  Google Scholar 

  38. Bommarius AS, Riebel BR (2004) Biocatalysis: fundamentals and applications. Wiley-VCH, Weinheim

    Google Scholar 

  39. Yang L, Dordick JS, Garde S (2004) Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys J 87:812–821

    Article  CAS  Google Scholar 

  40. Fernandes P, Cabral JMS, Pinheiro HM (1998) Influence of some operational parameters on the bioconversion of sitosterol with immobilized whole cells in organic medium. J Mol Catal B Enzym 5:307–310

    Article  CAS  Google Scholar 

  41. Cruz A, Angelova B, Fernandes P et al (2004) Study of key operational parameters for the side-chain cleavage of sitosterol by free mycobacterial cells in bis-(2-ethylhexyl) phthalate. Biocat Biotrans 22:189–194

    Article  CAS  Google Scholar 

  42. Hou CT (2005) Handbook of industrial biocatalysis. CRC Press, Boca Raton

    Book  Google Scholar 

  43. Carrea G, Riva S (2008) Organic synthesis with enzymes in non-aqueous media. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  44. Castro GR, Knubovets T (2003) Homogeneous biocatalysis in organic solvents and water-organic mixtures. Crit Rev Biotechnol 23:195–231

    CAS  Google Scholar 

  45. Straathof AJJ (2006) Quantitative analysis of industrial biotransformations. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  46. Fernandes P (2010) Enzymes in sugar industries. In: Panesar P, Marwaha SS, Chopra HK (eds) Enzymes in food processing: fundamentals and potential applications. IK International Publishing House Pvt Ltd, New Delhi

    Google Scholar 

  47. Olsen HS (2002) Enzymes in starch modification. In: Whitehurst RJ, Law BA (eds) Enzymes in food technology. Sheffield Academic Press Ltd, Sheffield

    Google Scholar 

  48. Norman BE, Anders V-N, Olsen HS, Pedersen S (2009) Processes for hydrolysis of starch. US Patent 20,090,142,817

    Google Scholar 

  49. Hobbs L (2009) Sweeteners from starch: production, properties and uses. In: Miller JB, Whistler R (eds) Starch: chemistry and technology, 3rd edn. Academic, Burlington

    Google Scholar 

  50. Girigowda K, Mulimani VH (2006) Hydrolysis of galacto-oligosaccharides in soymilk by k-carrageenan-entrapped α-galactosidase from Aspergillus oryzae. World J Microbiol Biotechnol 22:437–442

    Article  CAS  Google Scholar 

  51. Grano V, Diano N, Rossi S et al (2004) Production of low-lactose milk by means of nonisothermal bioreactors. Biotechnol Prog 20:1393–1401

    Article  CAS  Google Scholar 

  52. Grosová Z, Rosenberg M, Rebroš M et al (2008) Entrapment of β-galactosidase in polyvinylalcohol hydrogel. Biotechnol Lett 30:763–767

    Article  CAS  Google Scholar 

  53. Nakkharat P, Haltrich D (2007) β-galactosidase from Talaromyces thermophilus immobilized on to Eupergit C for production of galacto-oligosaccharides during lactose hydrolysis in batch and packed-bed reactor. World J Microbiol Biotechnol 23:759–764

    Article  CAS  Google Scholar 

  54. Park A-R, Oh D-K (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 85:1279–1286

    Article  CAS  Google Scholar 

  55. Mabel MJ, Sangeetha PT, Platel K, Srinivasan K et al (2008) Physicochemical characterization of fructooligosaccharides and evaluation of their suitability as a potential sweetener for diabetics. Carbohydr Res 343:56–66

    Article  CAS  Google Scholar 

  56. Yun JW, Song SK (1996) Continuous production of fructooligosaccharides using fructosyltransferase immobilized on ion exchange resin. Biotechnol Bioprocess Eng 1:18–21

    Article  Google Scholar 

  57. Santos AMP, Maugeri F (2007) Synthesis of fructooligosaccharides from sucrose using inulinase from Kluyveromyces marxianus. Food Technol Biotechnol 45:181–186

    CAS  Google Scholar 

  58. Henderson WE, King W, Shetty JK (2010) Situ fructooligosaccharide production and sucrose reduction. US Patent 20,100,040,728

    Google Scholar 

  59. Monsan P, Potocki de Montalk G, Sarçabal P et al (2000) Glucansucrases: efficient tools for the synthesis of oligosaccharides of nutritional interest. In: Bielecki S, Tramper J, Polak J (eds) Food biotechnology. Elsevier, Amsterdam

    Google Scholar 

  60. Buchholz K, Monsan PF (2003) Dextransucrase. In: Whitaker JR, Voragen AG, Wong DWS (eds) Handbook of food enzymology. Marcel Dekker, New York

    Google Scholar 

  61. Kubik C, Sikora B, Bielecki S (2004) Immobilization of dextransucrase and its use with soluble dextranase for glucooligosaccharides synthesis. Enzyme Microb Technol 34:555–560

    Article  CAS  Google Scholar 

  62. Berensmieier S, Jördening H-J, Bucholz K (2006) Isomaltose formation by free and immobilized dextransucrase. Biocat Biotrans 24:280–290

    Article  CAS  Google Scholar 

  63. Ryu S-A, Kim CS, Kim H-J et al (2003) Continuous d-tagatose production by immobilized thermostable l-arabinose isomerase in a packed-bed bioreactor. Biotechnol Prog 19:1643–1647

    Article  CAS  Google Scholar 

  64. Dehkordi AM, Tehrany MS, Safari I (2009) Kinetics of glucose isomerization to fructose by immobilized glucose isomerase (Sweetzyme IT). Ind Eng Chem Res 48:3271–3278

    Article  CAS  Google Scholar 

  65. Li Z, Wang M, Wang F et al (2007) γ-cyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol 77:245–255

    Article  CAS  Google Scholar 

  66. Liese A, Seelbach K, Buchholz A (2006) Processes. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations, 2nd edn. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  67. Nakamura K, Matsuda T (2007) Biocatalysis in water. In: Lindström UM (ed) Organic reactions in water: principles, strategies and applications. Blackwell Publishing, Oxford

    Google Scholar 

  68. Lopez-Gallego F, Schmidt-Dannert C (2010) Multi-enzymatic synthesis. Curr Opin Chem Biol 14:174–183

    Article  CAS  Google Scholar 

  69. Ghisalba O, Meyer H-P, Wohlgemuth R (2010) Industrial biotransformation. In: Flickinger M (ed) Encyclopedia of industrila biotechnology – bioprocess, bioseparation, and cell technology. Wiley, New York

    Google Scholar 

  70. Goetschel R, Barenholz Y, Bar R (1992) Microbial conversions in a liposomal medium. Part 2: cholesterol oxidation by Rhodococcus erythropolis. Enzyme Microb Technol 14:390–395

    Article  CAS  Google Scholar 

  71. Llanes N, Pendás J, Falero A et al (2002) Conversion of liposomal 4-androsten-3,17-dione by A. simplex immobilized cells in calcium pectate. J Steroid Biochem Mol Biol 80:131–133

    Article  CAS  Google Scholar 

  72. de Barros DPC, Fonseca LP, Cabral JMS (2010) Miniemulsion as efficient system for enzymatic synthesis of acid alkyl esters. Biotechnol Bioeng 106:507–515

    Article  CAS  Google Scholar 

  73. Perry RH, Green DW (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  74. Kamat SV, Iwaskewycz B, Beckman EJ et al (1993) Biocatalytic synthesis of acrylates in supercritical fluids: tuning enzyme activity by changing pressure. Proc Natl Acad Sci 90:2940–2944

    Article  CAS  Google Scholar 

  75. Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev 107:2786–2820

    Article  CAS  Google Scholar 

  76. Condoret JS, Vankan S, Joulia X et al (1997) Prediction of water adsorption curves for heterogeneous biocatalysis in organic and supercritical solvents. Chem Eng Sci 52:213–220

    Article  CAS  Google Scholar 

  77. Rezaei K, Temelli F, Jenab E (2007) Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnol Adv 25:272–280

    Article  CAS  Google Scholar 

  78. Randolph TW, Blanch HW, Prausnitz JM et al (1985) Enzymatic catalysis in a supercritical fluid. Biotechnol Lett 7:325–328

    Article  CAS  Google Scholar 

  79. Hammond D, Karel M, Klibanov A et al (1985) Enzymatic reactions in supercritical gases. Appl Biochem Biotechnol 11:393–400

    Article  CAS  Google Scholar 

  80. Nakamura K, Chi YM, Yamada Y et al (1986) Lipase activity and stability in supercritical carbon dioxide. Chem Eng Commun 45:207–212

    Article  CAS  Google Scholar 

  81. Chi YM, Nakamura K, Yano T (1988) Enzymatic interesterification in supercritical carbon-dioxide. Agric Biol Chem 52:1541–1550

    Article  CAS  Google Scholar 

  82. Randolph TW, Clark DS, Blanch HW et al (1988) Cholesterol aggregation and interaction with cholesterol oxidase in supercritical carbon dioxide. Proc Natl Acad Sci 85:2979–2983

    Article  CAS  Google Scholar 

  83. Mesiano AJ, Beckman EJ, Russell AJ (1999) Supercritical biocatalysis. Chem Rev 99(2):623–634

    Article  CAS  Google Scholar 

  84. Cantone S, Hanefeld U, Basso A (2007) Biocatalysis in non-conventional media-ionic liquids, supercritical fluids and the gas. Green Chem 9:954–971

    Article  CAS  Google Scholar 

  85. Darani KK, Mozafari MR (2009) Supercritical fluids technology in bioprocess industries: a review. J Biochem Tech 2:144–152

    CAS  Google Scholar 

  86. Habulin M, Primozic M, Knez Z (2007) Supercritical fluids as solvents for enzymatic reactions. Acta Chim Slovenica 54:667–677

    CAS  Google Scholar 

  87. Matsuda T, Harada T, Nakamura K (2005) Biocatalysis in supercritical CO2. Curr Org Chem 9:299–315

    Article  CAS  Google Scholar 

  88. Munshi P, Bhaduri S (2009) Supercritical CO2: a twenty-first century solvent for the chemical industry. Curr Sci 97:63–72

    CAS  Google Scholar 

  89. Herrero M, Mendiola JA, Cifuentes A et al (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511

    Article  CAS  Google Scholar 

  90. Dumont T, Barth D, Corbier C et al (1992) Enzymatic reaction kinetic: comparison in an organic solvent and in supercritical carbon dioxide. Biotechnol Bioeng 40:329–333

    Article  CAS  Google Scholar 

  91. Garcia S, Lourenco NMT, Lousa D et al (2004) A comparative study of biocatalysis in non-conventional solvents: ionic liquids, supercritical fluids and organic media. Green Chem 6:466–470

    Article  CAS  Google Scholar 

  92. Pasta P, Mazzola G, Carrea G et al (1989) Subtilisin-catalyzed transesterification in supercritical carbon dioxide. Biotechnol Lett 11:643–648

    Article  CAS  Google Scholar 

  93. Celia E, Cernia E, Palocci C et al (2005) Tuning Pseudomonas cepacea lipase (pcl) activity in supercritical fluids. J Supercrit Fluids 33:193–199

    Article  CAS  Google Scholar 

  94. Goddard R, Bosley J, Al-Duri B (2000) Lipase-catalysed esterification of oleic acid and ethanol in a continuous packed bed reactor, using supercritical CO2 as solvent: approximation of system kinetics. J Chem Technol Biotechnol 75:715–721

    Article  CAS  Google Scholar 

  95. Olsen T, Kerton F, Marriott R et al (2006) Biocatalytic esterification of lavandulol in supercritical carbon dioxide using acetic acid as the acyl donor. Enzyme Microb Technol 39:621–625

    Article  CAS  Google Scholar 

  96. Nakamura T, Toshima K, Matsumura S (2000) One-step synthesis of n-octyl-D-xylotrioside, xylobioside and xyloside from xylan and n-octanol using acetone powder of Aureobasidium pullulans in supercritical fluids. Biotechnol Lett 22:183–1189

    Article  Google Scholar 

  97. Okahata Y, Fujimoto Y, Ijiro K (1995) A lipid-coated lipase as an enantioselective ester synthesis catalyst in homogeneous organic solvents. J Org Chem 60:2244–2250

    Article  CAS  Google Scholar 

  98. Noritomi H, Miyata M, Kato S et al (1995) Enzymatic synthesis of peptide in acetonitrile/supercritical carbon dioxide. Biotechnol Lett 17:1323–1328

    Article  CAS  Google Scholar 

  99. Bornscheuer U, Capewell A, Wendel V et al (1996) On-line determination of the conversion in a lipase-catalyzed kinetic resolution in supercritical carbon dioxide. J Biotechnol 46:139–143

    Article  CAS  Google Scholar 

  100. Matsuda T, Ohashi Y, Harada T et al (2001) Conversion of pyrrole to pyrrole-2-carboxylate by cells of Bacillus megaterium in supercritical CO2. Chem Commun 2194–2195

    Google Scholar 

  101. Blattner C, Zoumpanioti M, Kroner J et al (2006) Biocatalysis using lipase encapsulated in microemulsion-based organogels in supercritical carbon dioxide. J Supercrit Fluids 36:182–193

    Article  CAS  Google Scholar 

  102. Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226

    Article  CAS  Google Scholar 

  103. Al-Duri B, Goddard R, Bosley J (2001) Characterisation of a novel support for biocatalysis in supercritical carbon dioxide. J Mol Catal B: Enzym 11:825–834

    Article  CAS  Google Scholar 

  104. Pomier E, Delebecque N, Paolucci-Jeanjean D et al (2007) Effect of working conditions on vegetable oil transformation in an enzymatic reactor combining membrane and supercritical CO2. J Supercrit Fluids 41:380–385

    Article  CAS  Google Scholar 

  105. Nakamura K (1990) Biochemical reactions in supercritical fluids. Trends Biotechnol 8:288–292

    Article  CAS  Google Scholar 

  106. Kamat S, Critchley G, Beckman EJ et al (1995) Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids: III. Does carbon dioxide covalently modify enzymes? Biotechnol Bioeng 46:610–620

    Article  CAS  Google Scholar 

  107. Karmee SK, Casiraghi L, Greiner L (2008) Technical aspects of biocatalysis in non-CO2-based supercritical fluids. Biotechnol J 3:104–111

    Article  CAS  Google Scholar 

  108. de los Ríos AP, Hernández-Fernández FJ, Gómez D et al (2007) Understanding the chemical reaction and mass-transfer phenomena in a recirculating enzymatic membrane reactor for green ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. J Supercrit Fluids 43:303–309

    Article  CAS  Google Scholar 

  109. Lozano P, De Diego T, Gmouh S et al (2007) Toward green processes for fine chemicals synthesis: biocatalysis in ionic liquid-supercritical carbon dioxide biphasic systems. In: Malhotra SV (ed) Ionic liquids in organic synthesis. American Chemical Society, Washington, DC, pp 209–223

    Chapter  Google Scholar 

  110. Perrut M (2000) Supercritical fluid applications: industrial developments and economic issues. Ind Eng Chem Res 39:4531–4535

    Article  CAS  Google Scholar 

  111. Horváth IT, Rábai J (1994) Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science 266:72–75

    Article  Google Scholar 

  112. Scott RL (1948) Liquid-liquid solubility of perfluorornethylcyclohexane with benzene, carbon tetrachloride, chlorobenzene, chloroform and toluene. J Am Chem Soc 70:4090

    Article  CAS  Google Scholar 

  113. Hildebrand JH, Cochran DRF (1949) Liquid-liquid solubility of perfluoromethylcyclohexane with benzene, carbon tetrachloride, chlorobenzene, chloroform and toluene. J Am Chem Soc 71:22–25

    Article  CAS  Google Scholar 

  114. Curran D, Lee Z (2001) Fluorous techniques for the synthesis and separation of organic molecules. Green Chem 3:G3–G7

    Article  CAS  Google Scholar 

  115. Paul AG, Jones KC, Sweetman AJ (2009) A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol 43:386–392

    Article  CAS  Google Scholar 

  116. Prevedouros K, Cousins IT, Buck RC et al (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40:32–44

    Article  CAS  Google Scholar 

  117. European Union, Directive 2006/122/ECOF of the European Parliament and of the council of 12 December 2006. Off J Eur Union, L/372/32–34, 27 Dec 2006

    Google Scholar 

  118. Council Decision 2006/507/EC of 14 October 2004 concerning the conclusion obotEC, of the Stockholm convention on persistent organic pollutants (OJ L 209, 31 Jul 2006, p 1)

    Google Scholar 

  119. Kehren J (2001) HFEs offer a cost-effective, environmentally safe alternative to aqueous cleaning. Data storage, 98–0212–2543–2, PennWell Corporation

    Google Scholar 

  120. Hungerhoff B, Sonnenschein H, Theil F (2002) Combining lipase-catalyzed enantiomer-selective acylation with fluorous phase labeling: a new method for the resolution of racemic alcohols. J Org Chem 67:1781–1785

    Article  CAS  Google Scholar 

  121. Hungerhoff B, Sonnenschein H, Theil F (2001) Separation of enantiomers by extraction based on lipase-catalyzed enantiomer-selective fluorous-phase labeling. Angew Chem Int Ed 40:2492

    Article  CAS  Google Scholar 

  122. Swaleh SM, Hungerhoff B, Sonnenschein H et al (2002) Separation of enantiomers by lipase-catalyzed fluorous-phase delabeling. Tetrahedron 58:4085–4089

    Article  CAS  Google Scholar 

  123. Luo ZY, Swaleh SM, Theil F et al (2002) Resolution of 1-(2-naphthyl)ethanol by a combination of an enzyme-catalyzed kinetic resolution with a fluorous triphasic separative reaction. Org Lett 4:2585–2587

    Article  CAS  Google Scholar 

  124. Beier P, O’Hagan D (2002) Enantiomeric partitioning using fluorous biphase methodology for lipase-mediated (trans)esterifications. Chem Commun 16:1680–1681

    Article  CAS  Google Scholar 

  125. Maruyama T, Kotani T, Yamamura H et al (2004) Poly(ethylene glycol)-lipase complexes catalytically active in fluorous solvents. Org Biomol Chem 2:524–527

    Article  CAS  Google Scholar 

  126. Saul S, Corr S, Micklefield J (2004) Biotransformations in low-boiling hydrofluorocarbon solvents. Angew Chem Int Ed 43:5519–5523

    Article  CAS  Google Scholar 

  127. Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351–356

    Article  CAS  Google Scholar 

  128. Ray PC, Rakshit JN (1911) CLXVII.-Nitrites of the alkylammonium bases: ethylammonium nitrite, dimethylammonium nitrite, and trimethylammonium nitrite. J Chem Soc Trans 99:1470–1475

    Article  CAS  Google Scholar 

  129. Walder P (1914). Bulletin de l’Académie Impériale des Sciences de St-Pétersbourg 405–422

    Google Scholar 

  130. Herfort M, Schneider H (1991) Spectroscopic studies of the solvent polarities of room-temperature liquid ethylammonium nitrate and its mixtures with polar-solvents. Liebigs Annalen Der Chemie 1:27–31

    Article  Google Scholar 

  131. Hurley FH, Wier TP (1951) Electrodeposition of metals from fused quaternary ammonium salts. J Electrochem Soc 98:203–206

    Article  CAS  Google Scholar 

  132. Chum HL, Koch VR, Miller LL et al (1975) Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room-temperature molten-salt. J Am Chem Soc 97:3264–3265

    Article  CAS  Google Scholar 

  133. Fry SE, Pienta NJ (1985) Effects of molten-salts on reactions – nucleophilic aromatic-­substitution by halide-ions in molten dodecyltributylphosphonium salts. J Am Chem Soc 107:6399–6400

    Article  CAS  Google Scholar 

  134. Boon JA, Levisky JA, Pflug JL et al (1986) Friedel crafts reactions in ambient-temperature molten-salts. J Org Chem 51:480–483

    Article  CAS  Google Scholar 

  135. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc-Chem Commun 13:965–967

    Article  Google Scholar 

  136. Suarez PAZ, Dullius JEL, Einloft S et al (1996) The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron 15:1217–1219

    Article  CAS  Google Scholar 

  137. Chauvin Y, Mussmann L, Olivier H (1996) A novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angew Chem-Int Edit Engl 34:2698–2700

    Article  Google Scholar 

  138. Poole CF (2004) Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J Chromatogr A 1037:49–82

    Article  CAS  Google Scholar 

  139. Earle MJ, Esperanca J, Gilea MA et al (2006) The distillation and volatility of ionic liquids. Nature 439:831–834

    Article  CAS  Google Scholar 

  140. Bonhote P, Dias AP, Papageorgiou N et al (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  141. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  142. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A373:1–56

    Google Scholar 

  143. Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  144. Abbott AP, Capper G, Davies DL et al (2006) Processing metal oxides using ionic liquids. Miner Process Extr Metall 115:15–18

    Article  CAS  Google Scholar 

  145. Marsh KN, Boxall JA, Lichtenthaler R (2004) Room temperature ionic liquids and their mixtures – a review. Fluid Phase Equilib 219:93–98

    Article  CAS  Google Scholar 

  146. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  147. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3691

    Article  CAS  Google Scholar 

  148. van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    Article  CAS  Google Scholar 

  149. Parvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Article  CAS  Google Scholar 

  150. Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AIChE J 47:2384–2389

    Article  CAS  Google Scholar 

  151. Ito Y, Nohira T (2000) Non-conventional electrolytes for electrochemical applications. Electrochim Acta 45:2611–2622

    Article  CAS  Google Scholar 

  152. Dupont J, Suarez PAZ (2006) Physico-chemical processes in imidazolium ionic liquids. Phys Chem Chem Phys 8:2441–2452

    Article  CAS  Google Scholar 

  153. Endres F, El Abedin SZ (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116

    Article  CAS  Google Scholar 

  154. Koel M (2005) Ionic liquids in chemical analysis. Crit Rev Anal Chem 35:177–192

    Article  CAS  Google Scholar 

  155. Anderson JL, Armstrong DW, Wei GT (2006) Ionic liquids in analytical chemistry. Anal Chem 78:2892–2902

    Article  Google Scholar 

  156. Sheldon RA, Lau RM, Sorgedrager MJ et al (2002) Biocatalysis in ionic liquids. Green Chem 4:147–151

    Article  CAS  Google Scholar 

  157. Moniruzzaman M, Nakashima K, Kamiya N et al (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314. doi:10.1016/j.bej.2009.10.002

    Article  CAS  Google Scholar 

  158. Erbeldinger M, Mesiano AJ, Russell AJ (2000) Enzymatic catalysis of formation of Z-aspartame in ionic liquid – an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog 16:1129–1131

    Article  CAS  Google Scholar 

  159. Patel RN (2001) Enzymatic synthesis of chiral intermediates for drug development. Adv Synth Catal 343:527–546

    Article  CAS  Google Scholar 

  160. Kim K-W, Song B, Choi M-Y et al (2001) Biocatalysis in ionic liquids: markedly enhanced enantioselectivity of lipase. Org Lett 3:1507–1509

    Article  CAS  Google Scholar 

  161. Lourenço NMT, Barreiros S, Afonso CAM (2007) Enzymatic resolution of indinavir precursor in ionic liquids with reuse of biocatalyst and media by product sublimation. Green Chem 9:734–736

    Article  CAS  Google Scholar 

  162. Lourenço NMT, Afonso CAM (2007) One-pot enzymatic resolution and separation of sec-alcohols based on ionic acylating agents. Angew Chem Int Ed 46:8178–8181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Fundação para a Ciência e a Tecnologia, Portugal, for financial support: postdoctoral grants SFRH/BPD/64160/2009 and SFRH/BPD/41175/2007 awarded to M.P.C. Marques and N.M.T. Lourenço, respectively; contracts under the program Ciência2007 awarded to P. Fernandes and C.C.C.R. de Carvalho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco P. C. Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Marques, M.P.C., Lourenço, N.M.T., Fernandes, P., de Carvalho, C.C.C.R. (2012). Green Solvents for Biocatalysis. In: Mohammad, A. (eds) Green Solvents I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1712-1_3

Download citation

Publish with us

Policies and ethics