Skip to main content

Preoperative Motor Mapping

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 4

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 4))

Abstract

Neurosurgery must always carefully balance the benefit of surgical therapy against the risk of causing or increasing neurological symptoms. Preoperative risk assessment on the basis of standard anatomical imaging alone is often insufficient because of inherent variations in motor representation from one patient to the next and because pathology can obscure or alter the anatomy. Several sophisticated new technologies have been developed in the past 30 years: PET, fMRI, MEG, TMS, DTI, which substantially improve the capabilities of the neurosurgical team to assess cortical function and improve their surgical planning. Neurosurgeons need to understand and use this modern technology to create patient-specific cortical maps and management plans, in order to improve therapeutic effectiveness and reduce morbidity. This chapter presents the current technologies in use for preoperative mapping of the motor system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    Article  PubMed  CAS  Google Scholar 

  • Berger H (1929) Uber das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527–570

    Article  Google Scholar 

  • Berger MS, Cohen WA, Ojemann GA (1990) Correlation of motor cortex brain mapping data with magnetic resonance imaging. J Neurosurg 72:383–387

    Article  PubMed  CAS  Google Scholar 

  • Bittar RG, Olivier A, Sadikot AF, Andermann F, Pike GB, Reutens DC (1999) Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg 91:915–921

    Article  PubMed  CAS  Google Scholar 

  • Forster MT, Szelényi A (2010) Integration neuronavigierter transkranieller Manetstimulation in die Resektionsplanung zentral gelegener Tumore. 17. Tagung der Sektion Neurophysiologie der Deutschen Gesellschaft für Neurochirurgie 19. 20.02.2010 Frankfurt

    Google Scholar 

  • Fox PT, Fox JM, Raichle ME, Burde RM (1985) The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J Neurophysiol 54:348–369

    PubMed  CAS  Google Scholar 

  • Gasser TG, Sandalcioglu EI, Wiedemayer H, Hans V, Gizewski E, Forsting M, Stolke D (2004) A novel passive functional MRI paradigm for preoperative identification of the somatosensory cortex. Neursurg Rev 27:106–112

    Article  Google Scholar 

  • Inoue T, Shimizu H, Nakasato N, Kumabe T, Yoshimoto T (1999) Accuracy and limitation of functional magnetic resonance imaging for identification of the central sulcus: comparison with magnetoencephalography in patients with brain tumors. Neuroimage 10:738–748

    Article  PubMed  CAS  Google Scholar 

  • Kantelhardt SR, Fadini T, Finke M, Kallenberg K, Siemerkus J, Bockermann V, Matthaeus L, Paulus W, Schweikard A, Rohde V, Giese A (2010) Robot-assisted image-guided transcranial magnetic stimulation for somatotopic mapping of the motor cortex: a clinical pilot study. Acta Neurochir 152:333–343

    Article  Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27:476–483

    Article  Google Scholar 

  • Kleiser R, Staempfli P, Valavanis A, Boesiger P, Kollias S (2010) Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology 52:37–46

    Article  PubMed  Google Scholar 

  • Korvenoja A, Kirveskari E, Aronen HJ, Avikainen S, Brander A, Huttunen J, Ilmoniemi RJ, Jaaskelainen JE, Kovala T, Makela JP, Salli E, Seppa M (2006) Sensorimotor cortex localization: comparison of magnetoencephalography, functional MRI imaging, and intraoperative cortical mapping. Radiology 241:213–222

    Article  PubMed  Google Scholar 

  • Krainik A, Duffau H, Capelle L, Cornu P, Boch AL, Mangin JF, Le Bihan D, Marsault C, Chiras J, Lehéricy S (2004) Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 27:1323–1332

    Google Scholar 

  • Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Rosen BR, Cosgrove GR (1997) Stereotactic transcranial magnetic stimulation: correlation with direct electrical cortical stimulation. Neurosurgery 41:1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Krings T, Schreckenberger M, Rohde V, Spetzger U, Sabri O, Reinges MH, Hans FJ, Meyer PT, Möller-Hartmann W, Gilsbach JM, Buell U, Thron A (2002) Functional MRI and !8F FDG-positron emmission tomography for presurgical planning: comparison with electrical cortical stimulation. Acta Neurochir 144(9):889–899

    Article  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weiskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    Article  PubMed  CAS  Google Scholar 

  • Lee CC, Ward HA, Sharbrough FW, Meyer FB, Marsch WR, Raffel C, So EL, Cascino GD, Shin C, Xu Y, Riederer SJ, Jack CR (1999) Assessment of functional MR imaging in neurosurgical planning. Am J Neuroradiol 20:1511–1519

    PubMed  CAS  Google Scholar 

  • Mäkelä JP, Forss N, Jääskeläinen J, Kirveskari E, Korvenoja A, Paetau R (2006) Magnetoencephalography in neurosurgery. Neurosurgery 59:493–510

    Article  PubMed  Google Scholar 

  • Mandonnet E, Winkler PA, Duffau H (2010) Direct electrical stimulation as an input gate into brain functional networks: principles, advantages, and limitations. Acta Neurochir (Wien) 152:185–193

    Article  Google Scholar 

  • McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP (2000) Variability in fMRI: an examination of intersession differences. NeuroImage 11:708–734

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (2000) Principles of behavioral and cognitive neurology. Oxford University Press, New York

    Google Scholar 

  • Nagarajan S, Kirsch H, Lin P, Findlay A, Honma S, Berger MS (2008) Preoperative localization of hand motor cortex by adaptive spatial filtering of magnetoencephalography data. J Neurosurg 109:228–237

    Article  PubMed  Google Scholar 

  • Nariai T, Senda M, Ishii K, Maehara T, Wakabayashi S, Toyama H, Ishiwata K, Hirakawa K (1997) Three-dimensional imaging of cortical structure, function and glioma for tumor resection. J Nucl Med 38:1563–1568

    PubMed  CAS  Google Scholar 

  • Picht T, Mularski S, Kuehn B, Vajkoczy P, Kombos T, Suess O (2009) Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery 65 (6 Suppl):93–99

    PubMed  Google Scholar 

  • Picht T, Schmidt S, Brandt S, Frey D, Hannula H, Neuvonen T, Karhu J, Vajkoczy P, Suess O (2011) Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 2011 Mar 23. [Epub ahead of print]

    Google Scholar 

  • Potchen SE, Potchen MJ (1991) The imaging of brain function. Positron emission tomography, single-photon emission computed tomography, and some prospects for magnetic resonance. Invest Radiol 26:258–265

    Article  PubMed  CAS  Google Scholar 

  • Reinges MH, Krings T, Meyer PT, Schreckenberger M, Rohde V, Weidemann J, Sabri O, Mulders EJ, Buell U, Thron A, Gilsbach JM (2004) Preoperative mapping of the cortical motor function: prospective comparison of functional magnetic resonance imaging and [15O]-H2O-positron emission tomography in the same co-ordinate system. Nucl Med Commun 25:987–997

    Article  PubMed  Google Scholar 

  • Roberts TP, Zusman E, McDermott M, Barbaro N, Rowley HA (1995) Correlation of functional magnetic source imaging with intraoperative cortical stimulation in neurosurgical patients. J Image Guid Surg 1:339–347

    Article  PubMed  CAS  Google Scholar 

  • Rutten GJ, Ramsey NF (2010) The role of functional magnetic resonance imaging in brain surgery. Neurosurg Focus 28:E4

    Article  PubMed  Google Scholar 

  • Schiffbauer H, Berger MS, Ferrrari P, Freudenstein D, Rowley HA, Roberts TP (2003) Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. Neurosurg Focus 15:E7

    Article  PubMed  Google Scholar 

  • Schreckenberger M, Spetzger U, Sabri O, Meyer PT, Zeggel T, Zimny M, Gilsbach J, Buell U (2001) Localisation of motor areas in brain tumour patients: a comparison of preoperative [18F] FDG-PET and intraoperative cortical electrostimulation. Eur J Nucl Med 28:1394–1403

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki H (2008) Human brain mapping: hemodynamic response and electrophysiology. Clin Neurophysiol 119:731–743

    Article  PubMed  Google Scholar 

  • Stippich C, Ochmann H, Sartor K (2002) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett 331:50–54

    Article  PubMed  CAS  Google Scholar 

  • Taulu S, Simola J, Kajola M (2004) MEG recordings of DC fields using the signal separation method (SSS). Neurol Clin Neurophysiol 30:35

    Google Scholar 

  • Ter-Pogossian MM, Wagner HN (1998) A new look at the cyclotron for making short-lived isotopes. 1966-classical article. Semin Nucl Med 28:202–212

    Article  PubMed  CAS  Google Scholar 

  • Tharin S, Golby A (2007) Functional brain mapping and its applications to neurosurgery. Neurosurgery 60(4 Suppl 2):185–201

    PubMed  Google Scholar 

  • Tieleman A, Deblaere K, Van Roost DV, Van Damme OV, Achten E (2009) Preoperative fMRI in tumour surgery. Eur Radiol 19:2523–2534

    Article  PubMed  Google Scholar 

  • Vinas FC, Zamorano L, Mueller RA, Jiang Z, Chugani H, Fuerst D, Muzik O, Mangner TJ, Diaz FG (1997) [15O]-water PET and intraoperative brain mapping: a comparison in the localization of eloquent cortex. Neurol Res 19:601–608

    PubMed  CAS  Google Scholar 

  • Witwer BP, Moftakhar R, Hasan KM, Deshmukh P, Haughton V, Field A, Arfanakis K, Noyes J, Moritz CH, Meyerand ME, Rowley HA, Alexander AL, Badie B (2002) Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 97:568–575

    Article  PubMed  Google Scholar 

  • Yamada K, Kizu O, Mori S, Ito H, Nakamura H, Yuen S, Kubota T, Tanaka O, Akada W, Sasajima H, Mineura K, Nishimura T (2003) Brain fiber tracking with clinically feasible diffusion-tensor MR imaging: initial experience. Radiology 227:295–301

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Picht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Picht, T., Atalay, A. (2012). Preoperative Motor Mapping. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 4. Tumors of the Central Nervous System, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1706-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1706-0_30

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1705-3

  • Online ISBN: 978-94-007-1706-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics