Skip to main content

Relationship Between Molecular Oncology and Radiotherapy in Malignant Gliomas (An Overview)

  • Chapter
  • First Online:
  • 1697 Accesses

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 4))

Abstract

Radiotherapy is currently in the midst of new developments both in technology and radiobiology. Recent papers have greatly enriched the current knowledge of radiation oncology, especially radiobiology and molecular oncology, and this has changed the oncology practice in radiation therapy in just a few years. The long-term objective of the translational research program in radiation oncology, also for central nervous system tumors such as glioblastoma multiforme (GBM), is to improve the therapeutic window, minimizing the damage to normal tissue and increasing the efficacy of radiation in eradicating cancer. The correct determination of the single patient profile as well as single tumor behaviour, with multidisciplinary approach is one of the next challenges in radiation oncology. This conceptual revolution will derive from the stronger correlations between new radiobiological data and experimental results in molecular oncology that are increasingly becoming available and ready to be translated into clinical practice. Some of the most interesting issues regarding relationships between molecular oncology and radiotherapy are: the availability of new, more effective drugs to prescribe in conjunction with radiation, the possibility to reduce intrinsic radioresistance or, on the contrary, to enhance radiosensitivity with innovative molecular targeted agents, the increasing potential application of cancer stem cells with radiotherapy, the impact of new molecular tracers for functional imaging of brain in radiotherapy treatment planning and in response evaluation. These issues are analysed and discussed in the present overview in regard to the recent literature on the topic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Beer AJ, Grosu AL, Carlsen J, et al. (2007) Feasibility of (18F)Galacto-RGD PET for imaging of avb3 expression on neovasculature in patients with squamous cell carcinoma of head and neck. Clin Cancer Res 13:6610–6616

    Article  PubMed  CAS  Google Scholar 

  • Bentzen SM (2008) Dose painting and theragnostic imaging: towards the prescription, planning and delivery of biologically targeted dose distributions in external beam radiation oncology. Cancer Treat Res 139:41–62

    PubMed  Google Scholar 

  • Bijnsdorp IV, van den Berg J, Kuipers GK, Wedekind LE, Slotman BJ, van Rijn J, Lafleur MV, Sminia P (2007) Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells. Neuro-oncology 85:25–31

    Article  CAS  Google Scholar 

  • Buchanan IM, Scott T, Tandle AT, Burgan WE, Burgess TL, Tofilon PJ, Camphausen K (2010, July 12) Radiosensitization of glioma cells by modulation of Met signaling with the hepatocyte growth factor neutralizing antibody, AMG102. J Cell Mol Med [Epub ahead of print]

    Google Scholar 

  • Chautard E, Loubeau G, Tchirkov A, Chassagne J, Vermot-Desroches C, Morel L, Verrelle P (2010) Akt signaling pathway: a target for radiosensitizing human malignant glioma. Neuro-oncology 12(5):434–443

    PubMed  CAS  Google Scholar 

  • Deutsch M, Green SB, Strike TA, et al. (1989) Results of a randomized trial comparing BCNU plus radiotherapy, streptozotocin plus radiotherapy, BCNU plus hyperfractionated radiotherapy, and BCNU following misonidazole plus radiotherapy in the postoperative treatment of malignant glioma. Int J Radiat Oncol Biol Phys 16(6):1389–1396

    Article  PubMed  CAS  Google Scholar 

  • Evers P, Lee PP, DeMarco J, Agazaryan N, Sayre JW, Selch M, Pajonk F (2010) Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC Cancer 10:384

    Article  PubMed  Google Scholar 

  • Fitzek MM, Thornton AF, Rabinov JD, et al. (1999) Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of a phase II prospective trial. J Neurosurg 91:251–260

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300(5622):1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Gross MW, Weber WA, Feldmann HJ, et al. (1998) The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys 41:989–995

    Article  PubMed  CAS  Google Scholar 

  • Gruber ML, Raza S, Gruber D, Narayana A (2009) Bevacizumab in combination with radiotherapy plus concomitant and adjuvant temozolomide for newly diagnosed glioblastoma: update progression-free survival, overall survival, and toxicity [abstract]. J Clin Oncol :91 s. Abstract 2017

    Google Scholar 

  • Hainsworth JD, Ervin T, Friedman E, Priego V, Murphy PB, Clark BL, Lamar RE (2010) Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme. Cancer 116(15):3663–3669

    Article  PubMed  CAS  Google Scholar 

  • Hegi ME, Diserens AC, Gorlia T, et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997

    Article  PubMed  CAS  Google Scholar 

  • Li B, Yuan M, Kim IA, Chang CM, Bernhard EJ, Shu HK (2004) Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 23:4594–4602

    Article  PubMed  CAS  Google Scholar 

  • Maucort-Boulch D, Baron MH, Pommier P, Weber DC, Mizoe JE, Rochat J, Boissel JP, Balosso J, Tsujii H, Amsallem E (2010) Rationale for carbon ion therapy in based on a review and a meta-analysis of neutron beam trials. Cancer Radiother 14(1):34–41

    PubMed  CAS  Google Scholar 

  • Meyn RE, Milas L, Ang K (2009) The role of apoptosis in radiation oncology. Int J Radiat Biol 85:107–115

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke DM, Kao GD, Singh N, et al. (1998) Conversion of a radioresistant phenotype to a more sensitive one by disabling erbB receptor signaling in human cancer cells. Proc Natl Acad Sci USA 95:10842–10847

    Article  PubMed  Google Scholar 

  • Payne DG, Simpson WJ, Keen C, et al. (1982) Malignant astrocytoma: hyperfractionated and standard radiotherapy with chemotherapy in a randomized prospective clinical trial. Cancer 50(11):2301–2306

    Article  PubMed  CAS  Google Scholar 

  • Piroth MD, Pinkawa M, Holy R, Klotz J, Nussen S, Stoffels G, Coenen HH, Kaiser HJ, Langen KJ, Eble MJ (2011) Prognostic value of early [18F] fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 80(1):176–184

    Article  PubMed  Google Scholar 

  • Ranza E, Bertolotti A, Facoetti A, Mariotti L, Pasi F, Ottolenghi A, Nano R (2009) Influence of imatinib mesylate on radiosensitivity of astrocytoma cells. Anticancer Res 29(11):4575–4578

    PubMed  CAS  Google Scholar 

  • Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67(19):8980–8984

    Article  PubMed  CAS  Google Scholar 

  • Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, Bekele BN, Aldape KD (2010) MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro-oncology 12(2):116–121

    PubMed  CAS  Google Scholar 

  • Roa W, Brasher PM, Bauman G, Anthes M, Bruera E, Chan A, Fisher B, Fulton D, Gulavita S, Hao C, Husain S, Murtha A, Petruk K, Stewart D, Tai P, Urtasun R, Cairncross JG, Forsyth P (2004) Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 22(9):1583–1588

    Google Scholar 

  • Shin KH, Urtasun RC, Fulton D, et al. (1985) Multiple daily fractionated radiation therapy and misonidazole in the management of malignant astrocytoma. A preliminary report. Cancer 56(4):758–760

    Article  PubMed  CAS  Google Scholar 

  • Siemann DW, Horsman MR (2004) Targeting the tumor vasculature: a strategy to improve radiation therapy. Expert Rev Anticancer Ther 4(2):321–327

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  • Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy–chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91

    PubMed  CAS  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  • Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, Neumaier B, Heiss WD, Wienhard K, Jacobs AH (2008) Glioma proliferation as assessed by 3'-fluoro-3'-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 14(7):2049–2055

    Article  PubMed  CAS  Google Scholar 

  • Valk PE, Mathis CA, Prados MD, et al. (1992) Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 33:2133–2137

    PubMed  CAS  Google Scholar 

  • Yamane T, Sakamoto S, Senda M (2010) Clinical impact of (11)C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging 37(4):685–690

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Alongi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Alongi, F., Chiti, A., Navarria, P., Scorsetti, M. (2012). Relationship Between Molecular Oncology and Radiotherapy in Malignant Gliomas (An Overview). In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 4. Tumors of the Central Nervous System, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1706-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1706-0_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1705-3

  • Online ISBN: 978-94-007-1706-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics