Skip to main content

Identification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics

  • Chapter
Book cover Vibration and Structural Acoustics Analysis
  • 2519 Accesses

Abstract

The objective of this chapter is to present some efficient techniques for identification of reduced models from experimental modal analysis in the fields of structural dynamics and vibroacoustics. The main objective is to build mass, stiffness and damping matrices of an equivalent system which exhibits the same behavior as the one which has been experimentally measured. This inverse procedure is very sensitive to experimental noise and instead of using purely mathematical regularization techniques, physical considerations can be used. Imposing the so-called properness condition of complex modes on identified vectors leads to matrices which have physical meanings and whose behavior is as close as possible to the measured one. Some illustrations are presented on structural dynamics. Then the methodology is extended to vibroacoustics and illustrated on measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhikari, S.: Optimal complex modes and an index of damping non-proportionality. Mech. Syst. Signal Process. 18(1), 1–28 (2004)

    Article  Google Scholar 

  2. Adhikari, S.: Damping modelling using generalized proportional damping. J. Sound Vib. 293(1–2), 156–170 (2006)

    Article  Google Scholar 

  3. Adhikari, S., Woodhouse, J.: Identification of damping: Part 1, viscous damping. J. Sound Vib. 243(1), 43–61 (2001)

    Article  Google Scholar 

  4. Adhikari, S., Woodhouse, J.: Identification of damping: Part 2, non-viscous damping. J. Sound Vib. 243(1), 63–88 (2001)

    Article  Google Scholar 

  5. Adhikari, S., Woodhouse, J.: Identification of damping: Part 3, symmetry-preserving methods. J. Sound Vib. 251(3), 477–490 (2002)

    Article  Google Scholar 

  6. Adhikari, S., Woodhouse, J.: Identification of damping: Part 4, error analysis. J. Sound Vib. 251(3), 491–504 (2002)

    Article  Google Scholar 

  7. Balmès, E.: New results on the identification of normal modes from experimental complex ones. Mech. Syst. Signal Process. 11(2), 229–243 (1997)

    Article  Google Scholar 

  8. Barbieri, N., Souza Júnior, O.H., Barbieri, R.: Dynamical analysis of transmission line cables. Part 2—damping estimation. Mech. Syst. Signal Process. 18(3), 671–681 (2004)

    Article  Google Scholar 

  9. Bernal, D., Gunes, B.: Extraction of second order system matrices from state space realizations. In: 14th ASCE Engineering Mechanics Conference (EM2000), Austin, Texas (2000)

    Google Scholar 

  10. Bert, C.W.: Material damping: An introductory review of mathematic measures and experimental technique. J. Sound Vib. 29(2), 129–153 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caughey, T.K., O’Kelly, M.E.: Classical normal modes in damped linear systems. J. Appl. Mech. 32, 583–588 (1965)

    Article  MathSciNet  Google Scholar 

  12. Chen, S.Y., Ju, M.S., Tsuei, Y.G.: Estimation of mass, stiffness and damping matrices from frequency response functions. J. Vib. Acoust. 118(1), 78–82 (1996)

    Article  Google Scholar 

  13. Christensen, O., Vistisen, B.B.: Simple model for low frequency guitar function. J. Acoust. Soc. Am. 68(3), 758–766 (1980)

    Article  Google Scholar 

  14. Craig, R.J., Bampton, M.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  15. Crandall, S.H.: The role of damping in vibration theory. J. Sound Vib. 11(1), 3–18 (1970)

    Article  MATH  Google Scholar 

  16. Everstine, G.C. Finite element formulations of structural acoustics problems. Comput. Struct. 65(3), 307–321 (1997)

    Article  MATH  Google Scholar 

  17. Fillod, R., Piranda, J.: Research method of the eigenmodes and generalized elements of a linear mechanical structure. Shock Vib. Bull. 48(3), 5–12 (1978)

    Google Scholar 

  18. Fletcher, N.H., Rossing, T.D.: The Physics of Musical Instruments. Springer, Berlin (1998)

    MATH  Google Scholar 

  19. Fritzen, C.P.: Identification of mass, damping, and stiffness matrices of mechanical systems. J. Vib. Acoust. Stress Reliab. Des. 108, 9–16 (1986)

    Article  Google Scholar 

  20. Gaul, L.: The influence of damping on waves and vibrations. Mech. Syst. Signal Process. 13(1), 1–30 (1999)

    Article  Google Scholar 

  21. Ibrahim, S.R.: Dynamic modeling of structures from measured complex modes. AIAA J. 21(6), 898–901 (1983)

    Article  Google Scholar 

  22. Ibrahim, S.R., Sestieri, A.: Existence and normalization of complex modes in post experimental use in modal analysis. In 13th International Modal Analysis Conference, Nashville, USA, pp. 483–489 (1995)

    Google Scholar 

  23. Kasai, T., Link, M.: Identification of non-proportional modal damping matrix and real normal modes. Mech. Syst. Signal Process. 16(6), 921–934 (2002)

    Article  Google Scholar 

  24. Lancaster, P., Prells, U.: Inverse problems for damped vibrating systems. J. Sound Vib. 283(3–5), 891–914 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Le Carrou, J.-L., Gautier, F., Foltête, E.: Experimental study of A0 and T1 modes of the concert harp. J. Acoust. Soc. Am. 121(1), 559–567 (2007)

    Article  Google Scholar 

  26. Lee, J.H., Kim, J.: Development and validation of a new experimental method to identify damping matrices of a dynamic system. J. Sound Vib. 246(3), 505–524 (2001)

    Article  Google Scholar 

  27. Lin, R.M., Zhu, J.: On the relationship between viscous and hysteretic damping models and the importance of correct interpretation for system identification. J. Sound Vib. 325(1–2), 14–33 (2009)

    Article  Google Scholar 

  28. Minas, C., Inman, D.J.: Identification of a nonproportional damping matrix from incomplete modal information. J. Vib. Acoust. 113(2), 219–224 (1991)

    Article  Google Scholar 

  29. Morand, H.J.-P., Ohayon, R.: Fluid Structure Interaction. Wiley, New York (1995)

    MATH  Google Scholar 

  30. Ouisse, M., Foltête, E.: On the comparison of symmetric and unsymmetric formulations for experimental vibro-acoustic modal analysis. In: Acoustics’08, Paris, 2008

    Google Scholar 

  31. Ozgen, G.O., Kim, J.H.: Direct identification and expansion of damping matrix for experimental-analytical hybrid modeling. J. Sound Vib. 308(1–2), 348–372 (2007)

    Article  Google Scholar 

  32. Pilkey, D.F., Park, G., Inman, D.J.: Damping matrix identification and experimental verification. In: Smart Structures and Materials, SPIE Conference on Passive Damping and Isolation, Newport Beach, California, pp. 350–357 (1999)

    Google Scholar 

  33. Prandina, M., Mottershead, J.E., Bonisoli, E.: An assessment of damping identification methods. J. Sound Vib. 323(3–5), 662–676 (2009)

    Article  Google Scholar 

  34. Rayleigh, J.W.S. The Theory of Sound, vols. 1, 2. Dover, New York (1945)

    Google Scholar 

  35. Srikantha Phani A., Woodhouse, J.: Viscous damping identification in linear vibration. J. Sound Vib. 303(3–5), 475–500 (2007)

    Article  Google Scholar 

  36. Srikantha Phani A., Woodhouse, J.: Experimental identification of viscous damping in linear vibration. J. Sound Vib. 319(3–5), 832–849 (2009)

    Article  Google Scholar 

  37. Tran, Q.H., Ouisse, M., Bouhaddi, N.: A robust component mode synthesis method for stochastic damped vibroacoustics. Mech. Syst. Signal Process. 24(1), 164–181 (1997)

    Article  Google Scholar 

  38. Van der Auweraer, H., Guillaume, P., Verboven, P., Vanlanduit, S.: Application of a fast-stabilizing frequency domain parameter estimation method. J. Dyn. Syst. Meas. Control 123(4), 651–658 (2001)

    Article  Google Scholar 

  39. Wyckaert, K., Augusztinovicz, F., Sas, P.: Vibro-acoustical modal analysis: reciprocity, model symmetry and model validity. J. Acoust. Soc. Am. 100(5), 3172–3181 (1996)

    Article  Google Scholar 

  40. Xu, J.: A synthesis formulation of explicit damping matrix for non-classically damped systems. Nucl. Eng. Des. 227(2), 125–132 (2004)

    Article  Google Scholar 

  41. Zhang, Q., Lallement, G.: Comparison of normal eigenmodes calculation methods based on identified complex eigenmodes. J. Spacecr. Rockets 24, 69–73 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jean-Loïc Le Carrou from Laboratoire d’Acoustique Musicale (Paris VI) and François Gautier from the Laboratoire d’Acoustique de l’Université du Maine, for the fruitful discussions and for allowing us to use their measurements data, used in the last part of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ouisse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ouisse, M., Foltête, E. (2011). Identification of Reduced Models from Optimal Complex Eigenvectors in Structural Dynamics and Vibroacoustics. In: Vasques, C., Dias Rodrigues, J. (eds) Vibration and Structural Acoustics Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1703-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1703-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1702-2

  • Online ISBN: 978-94-007-1703-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics