Skip to main content

Low Power Design Challenge in Biomedical Implantable Electronics

  • Chapter
  • 717 Accesses

Abstract

The quality of life for patients with sensory loss can be drastically improved by the use of biomedical implantable electronics. The implantable electronics can replace the functions of sensory organs that are congenitally defective or damaged by accidents. In the field of neural prosthesis, these implantable devices are often the most important constituents of the whole system. Two neural prosthetic devices are commercially available at present; the cochlear implant for the severely hearing impaired, and the deep brain stimulator for Parkinson’s disease patients. Under development is a device for the vision impaired, known as artificial vision or a retinal implant.

A neural prosthetic device consists of an internal implant, an external processor, and a telemetry module connecting the two. The external processor determines electrical stimulation parameters for a sensory input, encodes them, and transmits the encoded data to the implant unit. Often power for the implant electronics is also delivered from outside by telemetry. The implanted electronics then receives data, decodes them, and generates stimulation waveforms. These waveforms are sent to the electrode array to deliver charges to stimulate target neurons.

Unlike the ICs used in consumer electronics, safety is the number one concern for implantable devices in humans. Not only must the materials be biocompatible, but also any signals presented to the body must be proven safe. Long-term reliability of the neural interface is another concern. Due to glial tissue encapsulation, the impedance of the electrode-tissue interface can change over time.

In this chapter we consider two representative IC design examples of biomedical implantable electronics: cochlear and retinal implants. Low power design is critical in these applications. For example, in a cochlear implant, the typical power consumption of the current products is on the order of 100 milliwatts. The power depends on the number of channels or stimulation electrodes. While the number stays on the order of 10 for effective stimulation in cochlear implants, the number of required channels, or pixels, is expected to be on the order of 1000 for reasonable visual acuity in retinal implants. Thus low power design is essential for future biomedical implant systems. Here we discuss some of the design examples that have been implemented so far, but further innovative ideas are critically needed to ensure the success of future products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wilson, B.S., Finley, C.C., Lawson, D.T., Wolford, R.D., Eddington, D.K., Rabinowitz, W.M.: Better speech recognition with cochlear implants. Nature 352, 236–238 (1991)

    Article  ADS  Google Scholar 

  2. Kessler, D.K., Loeb, G.E., Barker, M.J.: Distribution of speech recognition results with the Clarion cochlear prosthesis. Ann. Otol. Rhinol. Laryngol. 104(Suppl. 166), 283–285 (1995)

    Google Scholar 

  3. Skinner, M.W., Clark, G.M., Whitford, L.A., Seligman, P.M., Staller, S.J., Shipp, D.B., Shallop, J.K.: Evaluation of a new spectral peak coding strategy for the nucleus 22 channel cochlear implant system. Am. J. Otol. 15(Suppl. 2), 15–27 (1994)

    Google Scholar 

  4. Dorman, M., Loizou, P., Rainey, D.: Speech intelligibility as a function of the number of channels of stimulation for signal processor using sine-wave and noise-band outputs. J. Acoust. Soc. Am. 102, 2403–2411 (1997)

    Article  ADS  Google Scholar 

  5. Wilson, B.S., Finley, C.C., Lawson, D.T., Wolford, R.D., Zerbi, M.: Design and evaluation of a continuous interleaved sampling (CIS) processing strategy for multichannel cochlear implants. J. Rehabil. Res. Dev. 30, 110–116 (1993)

    Google Scholar 

  6. http://www.cochlear.com/

  7. http://www.advancedbionics.com/

  8. http://www.medel.com/

  9. An, S.K., Park, S.I., Jun, S.B., Lee, C.J., Byun, K.M., Sung, J.H., Wilson, B.S., Rebsher, S.J., Oh, S.H., Kim, S.J.: Design for a simplified cochlear implant system. IEEE Trans. Biomed. Eng. 54(6), 973–982 (2007)

    Article  Google Scholar 

  10. Hamici, Z., Itti, R., Champier, J.: A high-efficiency power and data transmission system for biomedical implanted electronic devices. Meas. Sci. Technol. 7, 192–201 (1996)

    Article  ADS  Google Scholar 

  11. Sokal, N.O., Sokal, A.D.: Class-E-A new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Solid-State Circuits SC-10, 168–176 (1975)

    Article  ADS  Google Scholar 

  12. Hamida, A.B., Samet, M., Lakhoua, N., Drira, M., Mouine, J.: Sound spectral processing based on fast Fourier transform applied to cochlear implant for the conception of a graphical spectrogram and for the generation of stimulation pulses. In: Proc. 24th Annu. Conf. IEEE Industrial Electronics Society, vol. 3, pp. 1388–1393 (1998)

    Google Scholar 

  13. Tang, Z., Smith, B., Schild, J.H., Peckham, P.H.: Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulation. IEEE Trans. Biomed. Eng. 42, 524–528 (1995)

    Article  Google Scholar 

  14. Fernandez, C., Garcia, O., Prieto, R., Cobos, J.A., Gabriels, S., Van Der Borght, G.: Design issues of a core-less transformer for a contact-less applications. In: Proc. APEC02, pp. 339–345 (2002)

    Google Scholar 

  15. Merrill, D.R., Bikson, M., Jefferys, J.G.R.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2004)

    Article  Google Scholar 

  16. Wyatt, J., Rizzo, J.: Ocular implants for the blind. IEEE Spectr. 33, 47–53 (1996)

    Article  Google Scholar 

  17. Seo, J.M., Kim, S.J., Chung, H., Kim, E.T., Yu, H.G., Yu, Y.S.: Biocompatibility of polyimide microelectrode array for retinal stimulation. Mater. Sci. Eng. C 24, 185–189 (2004)

    Article  Google Scholar 

  18. Hesse, L., Schanze, T., Wilms, M., Eger, M.: Implantation of retinal stimulation electrodes and recording of electrical stimulation response in the visual cortex of the cat. Graefes Arch. Clin. Exp. Ophthalmol. 238, 840–845 (2000)

    Article  Google Scholar 

  19. Chow, A.Y., Chow, V.Y.: Subretinal electrical stimulation of the rabbit retina. Neurosci. Lett. 225, 13–16 (1997)

    Article  Google Scholar 

  20. Shivdasani, M.N., Luu, C.D., Cicione, R., Fallon, J.B., Allen, P.J., Leuenberger, J., Suaning, G.J., Lovell, N.H., Shepherd, R.K., Williams, C.E.: Evaluation of stimulus parameter and electrode geometry for an effective suprachoroidal retinal prosthesis. J. Neural Eng. 7, 036008 (2010)

    Article  ADS  Google Scholar 

  21. Sivaprakasam, M., Liu, W., Wang, G., Weiland, J.D., Humayun, M.S.: Architecture tradeoffs in high-density microstimulators for retinal prosthesis. IEEE Trans. Circuits Syst. 52(12), 2629–2642 (2005)

    Article  Google Scholar 

  22. Zhou, J.A., Woo, S.J., Park, S., Kim, E.T., Seo, J.M., Chung, H., Kim, S.J.: A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits. J. Biomed. Biotechnol. 2008, 547428 (2008) 10 pp.

    Google Scholar 

  23. Uehara, A., Pan, Y., Kagawa, K., Tokuda, T., Ohta, J., Nunoshita, M.: Micro-sized photo-detecting stimulator array for retinal prosthesis by distributed sensor network approach. Sens. Actuators A 120, 78–87 (2005)

    Article  Google Scholar 

  24. Pan, Y.L., Tokuda, T., Uehara, A., Kagawa, K., Ohta, J., Nunoshita, M.: A flexible and extendible neural stimulation device with distributed multi-chip architecture for retinal prosthesis. Jpn. J. Appl. Phys. 44, 2099–2103 (2005)

    Article  ADS  Google Scholar 

  25. Ohta, J., Tokuda, T., Kagawa, K., Sugitani, S., Taniyama, M., Uehara, A., Terasawa, Y., Nakauchi, K., Fujikado, T., Tano, Y.: Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation (STS). J. Neural Eng. 4, S85–S91 (2007)

    Article  Google Scholar 

  26. Wilson, B., Dorman, M.: Cochlear implants: a remarkable past and a brilliant future. Hear. Res. 242, 3–21 (2008)

    Article  Google Scholar 

  27. Tucci, D., Merson, M., Wilson, B.: A summary of the literature on global hearing impairment: current status and priorities for action. Otol. Neurotol. 31(1), 31–41 (2010)

    Article  Google Scholar 

  28. Lee, C.J.: An LCP-based cortical stimulator for pain control and a low cost but safe packaging using a new AC logic concept. Ph.D. Dissertation, School of Electrical Engineering and Computer Science, College of Engineering, Seoul National University, Aug. 2009. A patent pending

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung June Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kim, S.J. (2011). Low Power Design Challenge in Biomedical Implantable Electronics. In: Kyung, CM., Yoo, S. (eds) Energy-Aware System Design. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1679-7_11

Download citation

Publish with us

Policies and ethics