Skip to main content

Energy-Aware Surveillance Camera

  • Chapter
Book cover Energy-Aware System Design
  • 690 Accesses

Abstract

In this chapter, we introduce an application example of a wireless surveillance camera (WSC) consisting of image sensor, event detector, video encoder, flash memory, wireless transmitter, and battery. The battery- and flash-constrained WSC records images when significant events, such as suspicious pedestrians or vehicles, are detected, based on a hierarchical event detection method to avoid wasting energy on insignificant events. In an energy-aware sense, the recorded images are stored in non-volatile (flash) memory or transmitted to the base station according to the urgency of the event. Balancing the usage of all resources including battery and flash is critical in prolonging the lifetime of a WSC, because a shortage of either battery charge or flash capacity could lead to a complete loss of events, or a significant loss of quality in the recorded image of events. We assume that the resources of the WSC, i.e., the battery and flash, are refreshed every system maintenance period (SMP). The proposed method controls the bit rate of encoded videos and sampling rate, e.g., resolution and frame rate, to prolong the lifetime of the WSC until the next SMP. Experimental results show that the proposed method prolongs the lifetime of the WSC by up to 88.41% compared with an existing bit-rate allocation method that does not consider resource usage balancing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Weighted mean bit rate obtained with training sequences that have similar event characteristics.

References

  1. Valera, M., Velastin, S.: Intelligent distributed surveillance systems: a review. IEE Proc., Vis. Image Signal Process. 152(2) (2005)

    Google Scholar 

  2. Talukder, A., et al.: Optimal sensor scheduling and power management in sensor networks. In: Proc. SPIE (2005)

    Google Scholar 

  3. Talukder, A., et al.: Autonomous adaptive resource management in sensor network systems for environmental monitoring. In: Proc. IEEE Aerospace Conference (2008)

    Google Scholar 

  4. Hengstler, S., et al.: MeshEye: a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In: Proc. IPSN (2007)

    Google Scholar 

  5. He, T., et al.: Energy-efficient surveillance system using wireless sensor networks. In: Proc. MobiSys (2004)

    Google Scholar 

  6. Feng, W., et al.: Panoptes: scalable low-power video sensor networking technologies. ACM Trans. Multimed. Comput. Commun. Appl. 1(2) (2005)

    Google Scholar 

  7. Hampapur, A., et al.: Smart video surveillance: exploring the concept of multiscale spatiotemporal tracking. IEEE Signal Process. Mag. 22(2) (2005)

    Google Scholar 

  8. Vanam, R., et al.: Distortion-complexity optimization of the H.264/MPEG-4 AVC encoder using GBFOS algorithm. In: Proc. IEEE Data Compression Conference (2007)

    Google Scholar 

  9. He, Z., et al.: Power-rate-distortion analysis for wireless video communication under energy constraints. IEEE Trans. Circuits Syst. Video Technol. 15(5) (2005)

    Google Scholar 

  10. Zhang, Q., et al.: Power-minimized bit allocation for video communication over wireless channels. IEEE Trans. Circuits Syst. Video Technol. 12(6) (2002)

    Google Scholar 

  11. Liang, Y., et al.: Joint power and distortion control in video coding. In: Proc. SPIE (2005)

    Google Scholar 

  12. He, Z., Wu, D.: Resource allocation and performance analysis of wireless video sensors. IEEE Trans. Circuits Syst. Video Technol. 18(5) (2006)

    Google Scholar 

  13. He, Z., et al.: Energy minimization of portable video communication devices based on power-rate-distortion optimization. IEEE Trans. Circuits Syst. Video Technol. 18(5) (2008)

    Google Scholar 

  14. Su, L., et al.: Complexity-constrained, H. 264 video encoding. IEEE Trans. Circuits Syst. Video Technol. 19(4) (2009)

    Google Scholar 

  15. Open Source Computer Vision Library (OpenCV). http://sourceforge.net/projects/opencv/

  16. Kim, C., Hwang, J.: Video object extraction for object-oriented applications. J. VLSI Signal Process. 29, 7–21 (2001)

    Article  Google Scholar 

  17. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’97, p. 193 (1997)

    Chapter  Google Scholar 

  18. Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Proc. IEEE 6th International Conference on Computer Vision, p. 555 (1998)

    Google Scholar 

  19. Kim, J.: Analysis and architecture design of power-aware H.264/AVC encoder using power-rate-distortion optimization. Ph.D. dissertation, Korea Advanced Institute of Science and Technology (KAIST) (2010)

    Google Scholar 

  20. Kamaci, N., Altunbasak, Y., Mersereau, R.M.: Frame bit allocation for the H.264/AVC video coder via Cauchy-density-based rate and distortion models. IEEE Trans. Circuits Syst. Video Technol. 15(8) (2005)

    Google Scholar 

  21. Chouhan, S., et al.: Ultra-low power data storage for sensor network. In: Proc. IPSN (2006)

    Google Scholar 

  22. Mathur, G., et al.: A framework for energy-consumption-based design space exploration for wireless sensor nodes. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(7) (2009)

    Google Scholar 

  23. Na, S., Kim, G., Kyung, C.-M.: Lifetime maximization of video blackbox surveillance camera. In: Proc. of IEEE International Conference of Multimedia and Expo (2011)

    Google Scholar 

  24. Na, S., Kim, J., Kim, J., Kim, G., Kyung, C.-M.: Design of energy-aware video codec-based system. In: Proc. of IEEE International Conference on Green Circuits and Systems, ICGCS, pp. 201–206 (2010)

    Chapter  Google Scholar 

  25. Lu, X., Erkip, E., Wang, Y., Goodman, D.: Power efficient multimedia communication over wireless channels. IEEE J. Sel. Areas Commun. 21(10), 1738–1751 (2003)

    Article  Google Scholar 

  26. Performance evaluation of surveillance systems. http://www.research.ibm.com/peoplevision/performanceevaluation.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangkwon Na .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Na, S., Kyung, CM. (2011). Energy-Aware Surveillance Camera. In: Kyung, CM., Yoo, S. (eds) Energy-Aware System Design. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1679-7_10

Download citation

Publish with us

Policies and ethics