Skip to main content

Atmospheric inversions for estimating CO2 fluxes: methods and perspectives

  • Chapter
Greenhouse Gas Inventories

Abstract

We provide a review description of atmospheric inversion methods for the determination of fluxes of long-lived trace gases based on measurements of atmospheric concentration. Emphasis is given to technical aspects of inversion settings, which are crucial to inter-compare and understand inversion results. We briefly sketch the formalism used in such methods, then provide a summary of major currents in research and contemporary problems. Most attention is given to carbon dioxide (CO2) which poses the threat of future climate change. Therefore, there is keen interest in better understanding where and when CO2 emitted by the combustion of fossil fuels is reabsorbed by land ecosystems and oceans. Using the information contained in concentration fields observed from ground-based networks and from upcoming satellite observations in order to constrain the geographic distribution of surface fluxes is an inverse problem; it consists of finding a set of fluxes that optimally matches the observations available. We review the application of inverse methods to quantify the distribution of the sources and sinks of CO2 at the surface of the Earth based on global measurements of atmospheric concentration and three-dimensional models of atmospheric transport. We describe the use of top–down atmospheric inversion methods in terms of numerical transport modeling and atmospheric observation networks, and detail some of the currently important issues in assigning uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres RJ, Marland G, Fung I, Matthews E (1996) A 1°×1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Glob Biogeochem Cycles 10:419–429

    Article  CAS  Google Scholar 

  • Arellano AF, Kasibhatla PS, Giglio L, van der Werf GR, Randerson JT, Collatz GJ (2006) Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT). J Geophys Res 111:D09303. doi:10.1029/2005JD006613

    Article  Google Scholar 

  • Baker DF, Doney SC, Schimel DS (2006) Variational data assimilation for atmospheric CO2. Tellus, Ser B Chem Phys Meteorol 58(5):359–365

    Article  Google Scholar 

  • Bakwin PS, Tans PP, Zhao C, Ussler W III, Quesnell E (1995) Measurements of carbon dioxide on a very tall tower. Tellus B 47:535–549

    Article  Google Scholar 

  • Bakwin PS, Tans PP, Hurst DF, Zhao C (1998) Measurements of carbon dioxide on very tall towers: results from the NOAA/CMDL program. Tellus B 50:401–415

    Article  Google Scholar 

  • Baldocchi D, Falge E et al (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  • Biraud S, Ciais P, Ramonet M, Simmonds P, Kazan V, Monfray P, O’Doherty S, Spain G, Jennings SG (2002) Quantification of carbon dioxide, methane, nitrous oxide and chloroform emissions over Ireland from atmospheric observations at Mace Head. Tellus B 54:1–41

    Article  Google Scholar 

  • Bocquet M (2005) Grid resolution dependence in the reconstruction of an atmospheric tracer source. Nonlinear Process Geophys 12:219–234

    Article  Google Scholar 

  • Bolin B, Keeling CD (1963) Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. J Geophys Res 68:3899–3920

    CAS  Google Scholar 

  • Bousquet P, Peylin P, Ciais P, Le Quere C, Friedlingstein P, Tans PP (2000) Regional changes in carbon dioxide fluxes on land and oceans since 1980. Science 290(5495):1342–1346

    Article  CAS  Google Scholar 

  • Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke EG, Carouge C, Langenfelds RL, Lathiere J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443. ISI:000240798800042

    Article  CAS  Google Scholar 

  • Brenkert AL (1998) Carbon dioxide emission estimates from fossil-fuel burning, hydraulic cement production, and gas flaring for 1995 on a one degree grid cell basis. Available at http://cdiac.esd.ornl.gov/ndps/ndp058a.html

  • Bruhwiler LMP, Michalak AM, Peters W, Baker DF, Tans P (2005) An improved Kalman Smoother for atmospheric inversions. Atmos Chem Phys 5:2691–2702

    Article  CAS  Google Scholar 

  • Buchwitz M, De Beek R, Noël S, Burrows JP, Bovensmann H, Bremer H, Bergamaschi P, Körner S, Heimann M (2005) Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set. Atmos Chem Phys 5:3313–3329

    Article  CAS  Google Scholar 

  • Carouge C, Peylin P, Rayner PJ, Bousquet P, Chevallier F, Ciais P (2010) What can we learn from European continuous atmospheric CO2 measurements to quantify regional fluxes. Part 2: sensitivity of flux accuracy to inverse setup. Atmos Chem Phys 10:3119–3129

    Article  CAS  Google Scholar 

  • Chédin A, Serrar S et al (2003) First global measurement of midtropospheric CO2 from NOAA polar satellites: tropical zone. J Geophys Res 108(D18):4581

    Article  Google Scholar 

  • Chevallier F (2007) Impact of correlated observation errors on inverted CO2 surface fluxes from OCO measurements. Geophys Res Lett 34:L24804. doi:10.1029/2007GL030463

    Article  Google Scholar 

  • Chevallier F, Morcrette JJ, Chéruy F, Scott NA (2000) Use of a neural-network-based long-wave radiative: transfer scheme in the EMMWF atmospheric model. Q J R Meteorol Soc 126:761–776

    Article  Google Scholar 

  • Chevallier F, Engelen RJ, Peylin P (2005a) The contribution of AIRS data to the estimation of CO2 sources and sinks. Geophys Res Lett 32:L23801. doi:10.1029/2005GL024229

    Article  Google Scholar 

  • Chevallier F, Fisher M, Peylin P, Serrar S, Bousquet P, Breon FM, Chedin A, Ciais P (2005b) Inferring CO2 sources and sinks from satellite observations: method and application to TOVS data. J Geophys Res Atmos 110(D24):0148-0227, D24309. ISI:000234506500004

    Article  Google Scholar 

  • Chevallier F, Viovy N, Reichstein M, Ciais P (2006) On the assignment of prior errors in Bayesian inversions of CO2 surface fluxes. Geophys Res Lett 33:L13802. doi:10.1029/2006GL026496

    Article  Google Scholar 

  • Chevallier F, Engelen RJ, Carouge C, Conway TJ, Peylin P, Pickett-Heaps C, Ramonet M, Rayner PJ, Xueref-Remy I (2009a) AIRS-based vs surface-based estimation of carbon surface fluxes. J Geophys Res 114:D20303. doi:10.1029/2009JD012311

    Article  Google Scholar 

  • Chevallier F, Maksyutov S, Bousquet P, Bréon FM, Saito R, Yoshida Y, Yokota T (2009b) On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations. Geophys Res Lett 36:L19807. doi:10.1029/2009GL040108

    Article  Google Scholar 

  • Chevillard A, Karstens U, Ciais P, Lafont S, Heimann M (2002) Simulation of atmospheric CO2 over Europe and Western Siberia using the regional scale model. REMO Tellus 54B:872–894

    Article  CAS  Google Scholar 

  • Ciais P, Moore B, Steffen W, Hood M, Quegan S, Cihlar J, Raupach M, Rasool I, Doney S, Heinze H, Sabine C, Hibbard K, Schulze ED, Heimann M, Chédin A, Monfray P, Watson A, Le Quéré C, Tans PP, Dolman H, Valentini R, Arino O, Townshend J, Seufert G, Field C, Igrashi T, Goodale C, Nobre A, Inoue G, Crisp D, Baldocchi D, Tschirley J, Denning AS, Cramer W, Francey R, Wickland D (2006) A strategy to realize a coordinated system of integrated global carbon cycle observations. Integrated Global carbon observation theme. IGOS-Partnership. Available at http://ioc.unesco.org/igospartners/carbon.htm

  • Conway TJ, Tans PP, Waterman LS, Thoning KW, Kitzis DR, Masarie KA, Zhang N (1994) Evidence for interannual variability of the carbon cycle from the national oceanic and atmospheric administration/climate monitoring and diagnostics laboratory global air sampling network. J Geophys Res 99(D11):22831–22855

    Article  Google Scholar 

  • Courtier P, Thépaut J-N, Hollingsworth A (1994) A strategy for operational implementation of 4D-VAR, using an incremental approach. Q J R Meteorol Soc 120:1367–1387

    Article  Google Scholar 

  • Crisp D, Atlas RM, Breon F-M, Brown LR, Burrows JP, Ciais P, Connor BJ, Doney SC, Fung IY, Jacob DJ, Miller CE, O’Brien D, Pawson S, Randerson JT, Rayner P, Salawitch RJ, Sander SP, Sen B, Stephens GL, Tans PP, Toon GC, Wennberg PO, Wofsy SC, Yung YL, Kuang Z, Chudasama B, Sprague G, Weiss B, Pollock R, Kenyon D, Schroll S (2004) The orbiting carbon observatory mission. Adv Space Res Sp Iss 700–709:0273–1177. ISI:000223618200004

    Google Scholar 

  • Denning AS, Fung I, Randall DA (1995) Strong simulated meridional gradient of atmospheric CO2 due to seasonal exchange with the terrestrial biota. Nature 376:240–242

    Article  CAS  Google Scholar 

  • Engelen RJ, Andersson E, Chevallier F, Hollingsworth A, Matricardi M, McNally AP, Thépaut J-N, Watts PD (2004) Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: methodology and first results. J Geophys Res 109:D19309. doi:10.1029/2004JD004777

    Article  Google Scholar 

  • Engelen RJ, Serrar S, Chevallier F (2009) Four-dimensional data assimilation of atmospheric CO2 using AIRS observations. J Geophys Res 114:D03303. doi:10.1029/2008JD010739

    Article  Google Scholar 

  • Enting IG (2002) Inverse problems in atmospheric constituent transport. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Enting IG, Trudinger CM, Francey RJ (1995) A synthesis inversion of the concentration and δ13C of atmospheric CO2. Tellus B 47:35–52

    Article  Google Scholar 

  • Frohn LM, Christensen JC, Brandt J (2002) Development of a high resolution nested air pollution model - the numerical approach. J Comp Physiol 179(1):68–94

    CAS  Google Scholar 

  • Geels C, Gloor M, Ciais P, Bousquet P, Peylin P, Vermeulen AT, Dargaville R, Aalto T, Brandt J, Christensen JH, Frohn LM, Haszpra L, Karstens U, Rödenbeck C, Ramonet M, Carboni G, Santaguida R (2007) Comparing atmospheric transport models for future regional inversions over Europe. Part 1: mapping the atmospheric CO2 signals. Atmos Chem Phys 7:3461–3479. ISI:000248733000006

    Article  CAS  Google Scholar 

  • Gerbig C, Lin JC, Wofsy SC, Daube BC, Andrews AE, Stephens BB, Bakwin P, Grainger CA (2003) Towards constraining regional scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor oriented framework. J Geophys Res 108:D4757. doi:10.1029/2003JD003770

    Article  Google Scholar 

  • Gloor M, Bakwin P, Hurst D, Lock L, Drexler R, Tans P (2001) What is the concentration footprint of a tall tower? J Geophys Res 106:17831–17840

    Article  Google Scholar 

  • Gourdji S, Mueller K, Schaefer K, Michalak AM (2008) Global monthly-averaged CO2 fluxes recovered using a geostatistical inverse modeling approach: 2. Results including auxiliary environmental data. J Geophys Res 113(D21):D21115

    Article  Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415:626–630

    Article  Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen Y-H, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Kowalczyk E, Maki T, Maksyutov S, Peylin P, Prather M, Pak BC (2003) TransCom3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B(2):555–579. doi:10.1034/j.1600-0560.2003.00049

    CAS  Google Scholar 

  • Hein R, Crutzen PJ, Heimann M (1997) An inverse modeling approach to investigate the global atmospheric methane cycle. Glob Biogeochem Cycles 11:43–76

    Article  CAS  Google Scholar 

  • Hourdin F, Idelkadi A, Talagrand O (2006) Eulerian backtracking of atmospheric tracers: adjoint derivation, parametrization of subgrid-scale transport and numerical aspects. Q J R Meteorol Soc 132B(615):567–583

    Article  Google Scholar 

  • Houweling S, Kaminski T, Dentener F, Lelieveld J, Heimann M (1999) Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J Geophys Res 104:26137–26160

    Article  CAS  Google Scholar 

  • Houweling S, Bréon FM, Aben I, Rödenbeck C, Gloor M, Heimann M, Ciais P (2004) Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time. Atmos Chem Phys 4:523–538

    Article  CAS  Google Scholar 

  • Ide KP, Courtier P, Ghil M, Lorenc AC (1997) Unified notation for data assimilation: operational, sequential and variational. J Meteorol Soc Jpn 75:181–189

    Google Scholar 

  • Kaminski T, Heimann M, Giering R (1999) A coarse grid three-dimensional global inverse model of the atmospheric transport. 1. Adjoint model and Jacobian matrix. J Geophys Res 104(D15):18535–18553

    Article  CAS  Google Scholar 

  • Kaminski T, Rayner PJ, Heimann M, Enting IG (2001) On aggregation errors in atmospheric transport inversions. J Geophys Res 106(D5):4703–4715

    Article  CAS  Google Scholar 

  • Kaminski T, Knorr W, Rayner PJ, Heimann M (2002) Assimilating atmospheric data into a terrestrial biosphere model: a case study of the seasonal cycle. Glob Biogeochem Cycles 16(4):1066. doi:10.1029/2001GB001463

    Article  Google Scholar 

  • Krinner G, Viovy N, De Noblet-Ducoudré N, Ogee J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19:GB1015, 0886–6236. ISI:000227525800001

    Article  Google Scholar 

  • Krol M, Houweling S, Bregman B, van den Broek M, Segers A, van Velthoven P, Peters W, Dentener F, Bergamaschi P (2005) The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos Chem Phys 5(2):417–432

    Article  CAS  Google Scholar 

  • Law RM (1996) The selection of model-generated CO2 data: a case study with seasonal biospheric sources. Tellus 48B:474–486

    CAS  Google Scholar 

  • Law RM, Rayner PJ, Denning AS, Erickson D, Fung IY, Heimann M, Piper SC, Ramonet M, Taguchi S, Taylor JA, Trudinger CM, Watterson IG (1996) Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions. Glob Biogeochem Cycles 10(4). doi:10.1029/96GB01892

  • Law RM, Rayner PJ, Steele LP, Enting IG (2002) Using high temporal frequency data for CO2 inversions. Glob Biogeochem Cycles 16(4):1053. doi:10.1029/2001GB001593

    Article  Google Scholar 

  • Law RM et al (2008) TransCom model simulations of hourly atmospheric CO2: experimental overview and diurnal cycle results for 2002. Glob Biogeochem Cycles 22:GB3009. doi:10.1029/2007GB003050

    Article  Google Scholar 

  • Lauvaux T, Uliasz M, Sarrat C, Chevallier F, Bousquet P, Lac C, Davis KJ, Ciais P, Denning AS, Rayner PJ (2008a) Mesoscale inversion: first results from the CERES campaign with synthetic data. Atmos Chem Phys 8:3459–3471

    Article  CAS  Google Scholar 

  • Lauvaux T, Pannekoucke O, Sarrat C, Chevallier F, Ciais P, Noilhan J, Rayner PJ (2008b) Structure of the transport uncertainty in mesoscale inversions of CO2 sources and sinks using ensemble model simulations. Biogeosciences 6:1089–1102

    Article  Google Scholar 

  • Levin I, Langendörfer U, Schmidt M, Facklam C, Langenfelds R, Allison C, Francey R, Jordan A, Brand WA, Neubert REM, Meijer HAJ, Holmen K (2003) EuroSiberianCarbonflux: technical Report. CO2 intercomparison. In: Toru S (ed) Proceedings of the 11th IAEA/WMO meeting of CO2 experts, Tokyo, Sept 2001, WMO-GAW Report, vol 148, pp 37–54. Available at http://www.wmo.ch/web/arep/gaw/gawreports.html

  • Manning AJ, Ryall DB, Derwent RG, Simmonds PG, O’Doherty S (2003) Estimating European emissions of ozone depleting and greenhouse gases using observations and a modeling back-attribution technique. J Geophys Res 108(D14):4405. doi:10.1029/2002JD002312

    Article  Google Scholar 

  • Marland G, Boden T, Andres RJ (2001) Global, regional, and national CO2 emissions from fossil-fuel burning, cement production, and gas flaring: 1751–1998. Carbon Dioxide Information and Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA, NDP-030. Available at http://cdiac.esd.ornl.gov

  • Matross DM, Andrews A, Pathmathevan M, Gerbig C, Lin JC, Wofsy SC, Daube BC, Gottlieb EW, Chow VY, Lee JT, Zhao C, Bakwin PS, Munger JW, Hollinger DY (2006) Estimating regional carbon exchange in New England and Quebec by combining atmospheric, ground-based and satellite data. Tellus B 58:344–358

    Article  Google Scholar 

  • Meirink JF, Bergamaschi P, Frankenberg C, d’Amelio MTS, Dlugokencky EJ, Gatti LV, Houweling S, Miller JB, Röckmann T, Villani MG, Krol M (2008) Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: analysis of SCIAMACHY observations. J Geophys Res 113:D17301. doi:10.1029/2007JD009740

    Article  Google Scholar 

  • Michalak AM, Hirsch A, Bruhwiler L, Gurney KR, Peters W, Tans PP (2005) Maximum likelihood estimation of covariance parameters for Bayesian atmospheric trace gas surface flux inversions. J Geophys Res 110(D24):D24107. doi:10.1029/2005JD005970

    Article  Google Scholar 

  • Nicholls ME, Denning AS, Prihodko L, Vidale PL, Baker I, Davis K, Bakwin P (2004) A multiple-scale simulation of variations in atmospheric carbon dioxide using a coupled biosphere-atmospheric model. J Geophys Res 109:D18117. doi:10.1029/2003JD004482

    Article  Google Scholar 

  • Patra PK, Law RM, Peters W, Rödenbeck C, Takigawa M, Aulagnier C, Baker I, Bergmann DJ, Bousquet P, Brandt J, Bruhwiler L, Cameron-Smith PJ, Christensen JH, Delage F, Denning AS, Fan S, Geels C, Houweling S, Imasu R, Karstens U, Kawa SR, Kleist J, Krol MCL, Lin S-J, Lokupitiya R, Maki T, Maksyutov S, Niwa Y, Onishi R, Parazoo N, Pieterse G, Rivier L, Satoh M, Serrar S, Taguchi S, Vautard R, Vermeulen AT, Zhu1 Z (2008) TransCom model simulations of hourly atmospheric CO2. Analysis of synoptic scale variations for the period 2002–2003. Glob Biogeohem Cycles 22(4). doi:10.1029/2007GB003081

  • Pérez-Landa G, Ciais P, Sanz MJ, Gioli B, Miglietta F, Palau JL, Gangoiti G, Millán MM (2007a) Mesoscale circulations over complex terrain in the Valencia coastal region, Spain. Part 1: simulation of diurnal circulation regimes. Atmos Chem Phys 7:1835–1849

    Article  Google Scholar 

  • Pérez-Landa G, Ciais P, Gangoiti G, Palau JL, Carrara A, Gioli B, Miglietta F, Schumacher M, Millán MM, Sanz MJ (2007b) Mesoscale circulations over complex terrain in the Valencia coastal region, Spain. Part 2: modeling CO2 transport using idealized surface fluxes. Atmos Chem Phys 7:1851–1868

    Article  Google Scholar 

  • Peters W, Miller JB, Whitaker J, Denning AS, Hirsch A, Krol MC, Zupanski D, Bruhwiler L, Tans PP (2005) An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J Geophys Res 110(D24):D24304. doi:10.1029/2005JD006157

    Article  Google Scholar 

  • Petron G, Granier C, Khattatov B, Lamarque J-F, Yudin V, Muller J-F, Gille J (2002) Inverse modeling of carbon monoxide surface emissions using Climate Monitoring and Diagnostics Laboratory network observations. J Geophys Res 107:4761. doi:10.1029/2001JD001305

    Article  Google Scholar 

  • Peylin P, Rayner PJ, Bousquet P, Carouge C, Hourdin F, Heinrich P, Ciais P, AEROCARB contributors (2005) Daily CO2 flux estimates over Europe from continuous atmospheric measurements. Part 1 inverse methodology. Atmos Chem Phys 5:3173–3186

    Article  CAS  Google Scholar 

  • Pison I, Bousquet P, Chevallier F, Szopa S, Hauglustaine DA (2010) Multi-species inversion of CH4, CO and H2 emissions from surface measurements. Atmos Chem Phys 9:5281–5297

    Article  Google Scholar 

  • Ramonet M, Monfray P (1996) CO2 baseline concept in 3-D atmospheric transport models. Tellus B 48:502–520

    Article  Google Scholar 

  • Ramonet M, Ciais P, Nepomniachii I, Sidorov K, Neubert R, Langendorfer U, Picard D, Biraud S, Gusti M, Kolle O, Schulze E, Lloyd J (2002) Two years of aircraft based trace gas measurements over the Fyodorovskoye southern taiga forest 300km north west of Moscow. Tellus B 54:5

    Google Scholar 

  • Randerson JT (2001) The CASA terrestrial biogeochemical model. In: Mooney HA, Canadell J (eds) Encyclopedia of global environmental change, vol 2: the earth system: biological and ecological dimensions of global environmental change. Wiley, Hoboken

    Google Scholar 

  • Randerson JT, Thompson MV, Conway TJ, Fung IY, Field CB (1997) The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Glob Biogeochem Cycles 11:535–560

    Article  CAS  Google Scholar 

  • Rayner PJ, Scholze M, Knorr W, Kaminski T, Giering R, Widmann H (2005) Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Glob Biogeochem Cycles 19. doi:10.1029/2004GB002254

  • Rödenbeck C (2005) Estimating CO2 sources and sinks from atmospheric mixing ratio measurements using a global inversion of atmospheric transport. Technical Report 6, Max Planck Institute for Biogeochemistry, Jena

    Google Scholar 

  • Rödenbeck C, Houweling S, Gloor M, Heimann M (2003a) Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport. Tellus B 5:2488–2497

    Google Scholar 

  • Rödenbeck C, Houweling S, Gloor M, Heimann M (2003b) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys 3:1919–1964

    Article  Google Scholar 

  • Rödenbeck C, Conway TJ, Langenfeld RI (2006) The effect of systematic measurement errors on atmospheric CO2 inversions: a quantitative assessment. Atmos Chem Phys 6:149–161

    Article  Google Scholar 

  • Santaren D, Peylin P, Viovy N, Ciais P (2007) Optimizing a process-based ecosystem model with eddy-covariance flux measurements: a pine forest in southern France. Glob Biogeochem Cycles 21:2. doi:10.1029/2006GB002834

    Article  Google Scholar 

  • Sarrat C, Noilhan J, Lacarrere P, Donier S, Lac C, Calvet JC, Dolman AJ, Gerbig C, Neininger B, Ciais P, Paris JD, Boumard F, Ramonet M, Butet A (2007) Atmospheric CO2 modeling at the regional scale: application to the CarboEurope Regional Experiment. Biogeosci 4:1115–1126, 0148–0227 112 D12 D12105. ISI:000247369600006

    Article  CAS  Google Scholar 

  • Schmitgen S, Geiss H, Ciais P, Neininger B, Brunet Y, Reichstein M, Kley D, Volz-Thomas A (2004) Carbon dioxide uptake of a forested region in southwest France derived from airborne CO2 and CO measurements in a quasi-Lagrangian experiment. J Geophys Res 109:D14. doi:10.1029/2003JD004335

    Article  Google Scholar 

  • Stephens BB, Gurney KR, Tans PP, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, Aoki S, Machida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M, Shibistova O, Langenfelds RL, Steele LP, Francey RJ, Denning AS (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316:1732–1735. ISI:000247400500043

    Article  CAS  Google Scholar 

  • Stöckli R, Rutishauser T, Dragoni D, O’Keefe J, Thornton PE, Jolly M, Lu L, Denning AS (2008) Remote sensing data assimilation for a prognostic phenology model. J Geophys Res 113:G04021. doi:10.1029/2008JG000781

    Article  Google Scholar 

  • Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland ST, Takahashi TT (1997) Global air–sea flux of CO2: an estimate based on measurements of sea-air pCO2 difference. Proc Natl Acad Sci U S A 94:8292–8299

    Article  CAS  Google Scholar 

  • Tans PP, Bakwin PS, Guenther DW (1996) A feasible global carbon cycle observing system: a plan to decipher today’s carbon cycle based on observations. Glob Chang Biol 2:309–318

    Article  Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, Philadelphia. ISBN 0-89871-572-5

    Book  Google Scholar 

  • Uliasz M (1994) Lagrangian particle modeling in mesoscale applications. In: Zanetti P (ed) Environmental modelling II. Computational Mechanics, Southampton, pp 71–102

    Google Scholar 

  • Vautard R, Beekmann M, Menut L, Lattuati M (1998) Applications of adjoint modelling in urban air pollution. In: Borrell PM, Borrell P (eds) Eurotrac 1998, Guest contribution to subproject Saturn. WIT, Southampton, pp 502–508

    Google Scholar 

  • Yokota T, Oguma H, Morino I, Higurashi A, Aoki T, Inoue G (2004) Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space. In: Tsay SC, Yokota T, Ahn M-H (eds) Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 5652, pp 182–188

    Google Scholar 

  • Zhao CL, Tans PP (2006) Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air. J Geophys Res 111:D08S09. doi:10.1029/2005JD006003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ciais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Ciais, P. et al. (2010). Atmospheric inversions for estimating CO2 fluxes: methods and perspectives. In: Jonas, M., Nahorski, Z., Nilsson, S., Whiter, T. (eds) Greenhouse Gas Inventories. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1670-4_6

Download citation

Publish with us

Policies and ethics